理解LSTM
本文基于Understanding-LSTMs进行概括整理,对LSTM进行一个简单的介绍
什么是LSTM
LSTM(Long Short Term Memory networks)可以解决传统RNN的长期依赖(long-term dependencies)问题。它对传统RNN的隐层进行了结构上的改进。
LSTM的内部结构

这是传统的RNN的结构,内部有一个tanh层

LSTM和传统RNN结构类似,然而内部结构却有所不同

图中所示的水平线就是LSTM中的状态信息,可以把这个理解为记忆(memory)
下面介绍门的概念,LSTM中的门可以选择性的控制信息的流动,通常由一个sigmoid神经网络层和一个point wise(或者叫element wise)的乘法操作组成。

LSTM中有三种门:
遗忘门:

可以看到这里的\(f_{t}\)由输入的\(x_t\)和\(h_{t-1}\)得到,用来控制\(C_{t-1}\)中的信息的遗忘程度。\(f_{t}\)中的每个值都是0-1中的一个数,下界0代表完全遗忘,上界1代表完全不变。输入门:

遗忘门决定了历史状态信息的遗忘程度,那么输入门的作用就是往状态信息中添加新东西。同样,由输入的\(x_t\)和\(h_{t-1}\)得到当前的\(i_t\)用以控制新状态信息的更新程度。这里新状态信息\(\tilde{C}\)也是通过输入的\(x_t\)和\(h_{t-1}\)计算得出。

那么当前新的状态信息\(C_t\)就很显然可以通过上式计算得出,通俗的说就是遗忘一些旧信息,更新一些新信息进去。
- 输出门:

最后就是输出门了。类似地,根据\(x_t\)和\(h_{t-1}\)得出\(o_{t}\)用以控制哪些信息需要作为输出。
概括一下:
- 状态信息\(C_t\)的依赖于遗忘门\(f_t\)和输入门\(i_t\)
- 遗忘门\(f_t\)和输入门\(i_t\)依赖于输入参数中的\(h_{t-1}\)
- 而当前隐层输出\(h_t\)依赖于\(C_t\)
LSTM的一些变种
增加peephole connections
Gers & Schmidhuber (2000)提出的增加peephole connections

图中所示,在所有的门之前都与状态线相连,使得状态信息对门的输出值产生影响。但一些论文里只是在部门门前加上这样的连接,而不是所有的门
耦合遗忘门和输入门

这一种变体是将遗忘门和输入门耦合在一起,简单来说就是遗忘多少就更新多少新状态,没有遗忘就不更新状态,全部遗忘那就新状态全部更新进去。
GRU
这是目前比较流行的LSTM变种,不仅将遗忘门和输入门统一为更新们,而且将h和c也给合并了。可参考Cho, et al. (2014)

参考
理解LSTM的更多相关文章
- [译] 理解 LSTM 网络
原文链接:http://colah.github.io/posts/2015-08-Understanding-LSTMs/ 吴恩达版:http://www.ai-start.com/dl2017/h ...
- [译] 理解 LSTM(Long Short-Term Memory, LSTM) 网络
本文译自 Christopher Olah 的博文 Recurrent Neural Networks 人类并不是每时每刻都从一片空白的大脑开始他们的思考.在你阅读这篇文章时候,你都是基于自己已经拥有 ...
- (译)理解 LSTM 网络 (Understanding LSTM Networks by colah)
@翻译:huangyongye 原文链接: Understanding LSTM Networks 前言:其实之前就已经用过 LSTM 了,是在深度学习框架 keras 上直接用的,但是到现在对LST ...
- RNN(1) ------ “理解LSTM”(转载)
原文链接:http://www.jianshu.com/p/9dc9f41f0b29 Recurrent Neural Networks 人类并不是每时每刻都从一片空白的大脑开始他们的思考.在你阅读这 ...
- [转] 理解 LSTM 网络
[译] 理解 LSTM 网络 http://www.jianshu.com/p/9dc9f41f0b29 Recurrent Neural Networks 人类并不是每时每刻都从一片空白的大脑开始他 ...
- 技能|三次简化一张图:一招理解LSTM/GRU门控机制
作者 | 张皓 引言 RNN是深度学习中用于处理时序数据的关键技术, 目前已在自然语言处理, 语音识别, 视频识别等领域取得重要突破, 然而梯度消失现象制约着RNN的实际应用.LSTM和GRU是两种目 ...
- 『cs231n』RNN之理解LSTM网络
概述 LSTM是RNN的增强版,1.RNN能完成的工作LSTM也都能胜任且有更好的效果:2.LSTM解决了RNN梯度消失或爆炸的问题,进而可以具有比RNN更为长时的记忆能力.LSTM网络比较复杂,而恰 ...
- 【翻译】理解 LSTM 网络
目录 理解 LSTM 网络 递归神经网络 长期依赖性问题 LSTM 网络 LSTM 的核心想法 逐步解析 LSTM 的流程 长短期记忆的变种 结论 鸣谢 本文翻译自 Christopher Olah ...
- 【翻译】理解 LSTM 及其图示
目录 理解 LSTM 及其图示 本文翻译自 Shi Yan 的博文 Understanding LSTM and its diagrams,原文阐释了作者对 Christopher Olah 博文 U ...
- 如何简单的理解LSTM——其实没有那么复杂(转载)
转载地址:https://www.jianshu.com/p/4b4701beba92 1.循环神经网络 人类针对每个问题的思考,一般不会是完全的从头开始思考.正如当你阅读这篇译文的时候,你会根据已经 ...
随机推荐
- visual studio code 在 mac 下按 F12无效
vsc 默认通过 F12可以查看定义(Go to Definition),可以查看类或方法的定义: 但是在 mac 环境下,有时按 F12并不生效,但是菜单栏的 Go 选项是被启动的,此时需要进行 2 ...
- Python和Java分别实现冒泡排序
1.基本思想 冒泡排序的基本思想是对比相邻的元素值.相邻元素值比较,如果满足条件两者就交换,把较小的移动到前面,把较大的移动到后面,这样较小的元素就像气泡一样浮上来了.可以看出,冒泡排序的每一次循环都 ...
- Bootstrap-table 使用总结
一.什么是Bootstrap-table? 在业务系统开发中,对表格记录的查询.分页.排序等处理是非常常见的,在Web开发中,可以采用很多功能强大的插件来满足要求,且能极大的提高开发效率,本随笔介绍这 ...
- 一款非常好用的万能本地离线激活工具,支持Office2016、Office2015、Win7、Win8/8.1/10、Win2008/2012/R2系统,全自动安装且无需联网状态即可全部激活,它由国外网友heldigard制作,小巧、简单,只需运行而不用去管它自动激活,能自动激活为180天无限循环,欢迎大家下载使用
office2016激活工具(KMS)是一款非常好用的万能本地离线激活工具,支持Office2016.Office2015.Win7.Win8/8.1/10.Win2008/2012/R2系统,全自动 ...
- Java框架之Spring(三)
本文主要介绍Spring中, 1 Bean 的 init-method 和 destroy-method 2 集合类型的装配 3 注解方式装配 4 以自动扫描把组件纳入spring容器中管理 5 代理 ...
- 【Java基础】3、Java 位运算(移位、位与、或、异或、非)
public class Test { public static void main(String[] args) { // 1.左移( << ) // 0000 0000 0000 0 ...
- 【Tomcat】Tomcat日志切割
下载并解压缩 cronolog # tar zxvf cronolog-1.6.2.tar.gz 2.进入cronolog安装文件所在目录 # cd cronolog-1.6.2 3.运行安装 # ...
- Contest2075 - 湖南多校对抗(csu1576)大数 Catalan Square
Problem C: Catalan Square Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 42 Solved: 16[Submit][Stat ...
- Python知识点小记
类 设置类属性必须使用类对象,若使用实例对象设置,会重新创建一个和类属性同名的实例属性 类对象可调用 类方法&静态方法, 实例对象可调用 实例方法&类方法&静态方法; 类方法和 ...
- Jetbrains IDE 中 compass sass 设置
环境 Ubuntu 13.10 1. 安装ruby sudo apt-get install ruby 如果后面安装 compass 时遇到安装失败,提示:“[Ubuntu] ERROR: Faile ...