(转)位操作是程序设计中对位模式二进制数的一元和二元操作. 在许多古老的微处理器上, 位运算比加减运算略快, 通常位运算比乘除法运算要快很多. 在现代架构中, 情况并非如此:位运算的运算速度通常与加法运算相同(仍然快于乘法运算).

简单来说,按位运算就把数字转换为机器语言——二进制的数字来运算的一种运算形式在计算机系统中,数值一律用补码来表示(存储)。

Python中的按位运算符有:左移运算符(<<),右移运算符(>>),按位与(&),按位或(|),按位翻转(~)。这些运算符中只有按位翻转运算符是单目运算符,其他的都是双目运算符。

按位与    &

举例:

3&5

解法:3的二进制补码是 11,  5的是101, 3&5也就是011&101,先看百位(其实不是百位,这样做只是便于理解) 一个0一个1,根据(1&1=1,1&0=0,0&0=0,0&1=0)可知百位应该是0,同样十位上的数字1&0=0,个位上的数字1&1=1,因此最后的结果是1.(这之后本来应该还有一步,因为我们现在得到的数值只是所求答案的补码,但是因为正数的补码即是它本身,所以就省略了。不过,下面的例子就不能省略最后这一步了).

-1&-2

                   解法:-1的补码是11111111,  -2的补码是11111110, 11111111&11111110得到的结果是:11111110,这个是补码,再转化位原码为100000010 (负数转换位原码的方法是减一取反),最后转换为十进制是 -2.

-2&6

解法:-2的补码是11111110,  6的补码是110,   11111110&110,也就是11111110&00000110(这样写的目的是让初学者能够更好理解按位运算),按照上面的方法得到的结果是:110,转化位十进制就是6.

小技巧:利用按位与可以将任意二进制数的最后一位变为0,即就是X&0.

按位并    |

举例:

4|7

解法:按位并的计算规律和按位与的很相似,只不过换了逻辑运算符,并的规律是: 1|1=1 ,1 |0=1, 0|0=0.   4|7转换位二进制就是:100|111=111.  二进制111即为十进制的7.

小技巧:利用按位并可以将任意二进制数的最后一位变为1,即就是X|1.

按位异或    ^

方法:  对位相加,特别要注意的是不进位.

举例:

2^5

                   解法:10^101=111,二进制111得到十进制的结果是7.

1^1

解法:1+1=0.(本来二进制1+1=10,但不能进位,所以结果是0)

-3^4

                  

解法: -3的补码是11111101,4的补码是100 (也即00000100), 1111 1101^0000 0100=1111 1001,补码1111 1001转为原码是1000 0111,即十进制的-7.

 
         按位翻转  ~   
         
          方法:   将二进制数+1之后乘以-1,x的按位翻转是-(x+1) . 注意,按位运算符是单目运算符.  -9 ,  1+~4是正确的,5~3就不对了.
      这是更快捷的按位翻转算法,也可以按部就班每位按位取反(包括符号位),最后如果是负数再转为原码 
          举例:

~3

解法:3的二进制是11, -(11+1)=-100B=-4D. (注:B和D分别表示二进制和十进制).

~-2

                   解法:   -  (-10+1)  =1 【即(b)10 - 1 = 01】  【此方法不涉及补码】
     或者:-2在计算机中存储为补码:1111 1110,按位取反得~1111 1110 = 0000 0001即为1
 

左移运算符  <<

           

方法:    X<<N 将一个数字X所对应的二进制数向左移动N位.

举例:

                 3<<2
   
                 解法:11向左移动两位变为1100,即12 .
 

右移动运算符  >>

             

方法:    X>>N 将一个数字X所对应的二进制数向右移动N位.

             

           举例:

         
                       3>>2
   
                       解法:11向右移动两位变为0.
 
                        10>>1
          
                        解法:10的二进制是1010,向右边移动一位是101,即5.

Python语言中的按位运算的更多相关文章

  1. C语言中的重要位运算

    1. 常用的等式 :-n = ~(n-1) = ~n + 1. 2. 获取整数n的人进制形式中的最后1个,也就是只保留最后一个1,其余的全部置位0,如1000 0011 --->  0000 0 ...

  2. C语言中的按位移动及其简单引用

    C语言中的按位移动及其简单应用 在C语言中按位左移用”<<”表示,按位右移用”>>”表示. 按位左移和按位右移运算经常被用来替换乘二和除二运算,但是要注意,这两者之间并不完全等 ...

  3. 【转】Cocoa中的位与位运算

    转自:http://www.tuicool.com/articles/niEVjy 介绍 位操作是程序设计中对位模式或二进制数的一元和二元操作. 在许多古老的微处理器上, 位运算比加减运算略快, 通常 ...

  4. Python语言中各种进制相互转换

    目录 Python语言中各种进制相互转换 将二进制.八进制.十进制的数分别转换成十进制的方法 将十进制转换成二进制.八进制.十六进制 Python语言中各种进制相互转换 本文参考自https://ww ...

  5. Python语言中的关键字(自己做的读书笔记)

    电脑配置:联想笔记本电脑 windows8系统 Python版本:2.7.8 本文章撰写时间:2015.1.1 作者:陈东陈 阅读说明: 1.本文都是先解释,后放图片: 2.文中斜体部分要么为需要输入 ...

  6. Integer中的奇妙位运算

    Integer中的奇妙位运算 参考资料 https://segmentfault.com/a/1190000015763941 highestOneBit(int i) 函数的作用是获得传入参数的最高 ...

  7. python语言中的编码问题

    在编程的过程当中,常常会遇到莫名其妙的乱码问题.很多人选择出了问题直接在网上找答案,把别人的例子照搬过来,这是快速解决问题的一个好办法.然而,作为一个严谨求实的开发者,如果不从源头上彻底理解乱码产生的 ...

  8. C语言回顾-函数和位运算

    1.函数的概述 功能独立的代码块 C语言由若干函数组成 1)从定义分,库函数和用户定义函数两种 2)从返回值分,有返回值函数和无返回值函数 3)从参数分,无参函数和有参函数 2.形参和实参 1)形参定 ...

  9. Python 进制转换、位运算

    一.进制转换 编程用十进制,十进制转换为二进制.八进制.十六进制 In [135]: bin(23) Out[135]: '0b10111' In [136]: oct(23) Out[136]: ' ...

随机推荐

  1. python函数嵌套定义

    python的这个特性是很特别的,与C#和C++都不一样.请看下面的例子 def outFun(): def innerFun_0():#1.在内部定义一个函数 print("i am fi ...

  2. redis的缓冲击穿|缓冲雪崩|缓冲淘汰

    Redis 的缓存穿透和击穿 查询数据 缓存中有,从缓存中返回 缓存中没有,从数据库中查找,数据库中命中结果 ,将查询到的数据保存到缓存中 缓存中没有,从数据库中查找,数据库中也没有 , 不在缓存中保 ...

  3. js day03

    一)jQuery常用AJAX-API 目的:简化客户端与服务端进行局部刷新的异步通讯 (1)取得服务端当前时间 简单形式:jQuery对象.load(url) 返回结果自动添加到jQuery对象代表的 ...

  4. leetcode221

    int maximalSquare(vector<vector<char>>& matrix) { int height=matrix.size(); ) ; ].si ...

  5. Kettle安装Kafka Consumer和Kafka Producer插件

    1.从github上下载kettle的kafka插件,地址如下 Kafka Consumer地址: https://github.com/RuckusWirelessIL/pentaho-kafka- ...

  6. STS(eclipse)3.7.3新建项目报错:org.apache.maven.archiver.MavenArchiver.getManifest(org.apache.maven.project.MavenProject, org.apache.maven.archiver.MavenArchiveConfiguration)

    烦人的版本兼容问题 没有使用sts3.7.3系统内嵌的maven3.3.3,调整为稍高版本的maven3.5.2,懒得修改配置了. 升级eclipse插件吧. Eclipse,Help -> I ...

  7. 尚硅谷springboot学习27-使用外置servlet容器

    嵌入式Servlet容器:应用打成可执行的jar ​ 优点:简单.便携: ​ 缺点:默认不支持JSP.优化定制比较复杂(使用定制器[ServerProperties.自定义EmbeddedServle ...

  8. laravel PHPExcel 使用小结

    最近需求要用到PHPExcel,laravel框架中有相应的组件https://github.com/Maatwebsite/Laravel-Excel,我用的是2.1的(3.0文档不详细而且坑似乎也 ...

  9. maven项目发布到tomcat的错误

    Could not publish to the server. java.lang.IndexOutOfBoundsException "Updating status for Tomca ...

  10. Linux下NFS的搭建与配置

    一.简介 1.NFS 是Network File System的缩写,即网络文件系统.一种使用于分散式文件系统的协定,由Sun公司开发,于1984年向外公布. 2.NFS可实现Linux系统之间的文件 ...