//和以前写的fft不太一样,可能是因为要取模??
#include<iostream>
#include<cstring>
#include<cmath>
#include<cstdio>
#include<algorithm>
using namespace std;
typedef long long ll;
const int mod=,maxn=;
int mx,n,m,inv[maxn],a[maxn],b[maxn],c[maxn],na[maxn],w[][maxn],pos[maxn];
int qmi(int x,int y){
int t=;
for(;y;y>>=,x=(ll)x*x%mod)if(y&)t=(ll)t*x%mod;
return t;
}
void pre(int n){
int i,x=qmi(,(mod-)/n);//以前这里的取值都和mod无关啊,取了模了不一样了?
w[][]=w[][]=;
for(int i=;i<n;++i)w[][i]=w[][n-i]=(ll)w[][i-]*x%mod;
for(int i=;i<n;++i){
pos[i]=pos[i>>]>>;
if(i&)pos[i]|=n>>;
}
}
void fnt(int *a,int n,int flag){
if(n>mx)mx=n;
int i,j,k,l,x,u,v;
for(i=;i<n;++i)na[pos[i]]=a[i];
memcpy(a,na,sizeof(int)*n);
for(k=;k<n;k<<=){
for(i=,x=n/k>>;i<n;i+=k<<)
for(j=i,l=;j<i+k;++j,l+=x){
u=a[j];v=(ll)a[j+k]*w[flag][l]%mod;
a[j]=(u+v)%mod;a[j+k]=(u-v+mod)%mod;
}
}
if(flag){
x=qmi(n,mod-);
for(i=;i<n;++i)a[i]=(ll)a[i]*x%mod;
}
}
void solve_inv(int *a,int *b,int n){
if(n==){b[]=qmi(a[],mod-);return;}
int i;solve_inv(a,b,n>>);
memcpy(c,a,sizeof(int)*n);memset(c+n,,sizeof(int)*n);
pre(n<<);
fnt(b,n<<,);fnt(c,n<<,);
for(i=;i<(n<<);++i)b[i]=(-(ll)b[i]*c[i]%mod+mod)*b[i]%mod;
fnt(b,n<<,);memset(b+n,,sizeof(int)*n);
}
int main(){
int i,n;scanf("%d",&n);
inv[]=inv[]=a[]=m=;
while(m<=n)m<<=;
for(int i=;i<=n;++i)inv[i]=mod-(ll)inv[mod%i]*(mod/i)%mod;
for(int i=;i<=n;++i)inv[i]=(ll)inv[i-]*inv[i]%mod;
for(int i=;i<=n;++i)a[i]=((mod-inv[i])<<)%mod;
solve_inv(a,b,m);
int ans=b[n];
for(int i=n;i;--i)ans=((ll)ans*i+b[i-])%mod;
printf("%d\n",ans);
return ;
}

学习地址:http://blog.csdn.net/lych_cys/article/details/51512278

bzoj4555(多项式求逆解法)的更多相关文章

  1. 【BZOJ】4555: [Tjoi2016&Heoi2016]求和 排列组合+多项式求逆 或 斯特林数+NTT

    [题意]给定n,求Σi=0~nΣj=1~i s(i,j)*2^j*j!,n<=10^5. [算法]生成函数+排列组合+多项式求逆 [题解]参考: [BZOJ4555][Tjoi2016& ...

  2. luogu P4725 多项式对数函数 (模板题、FFT、多项式求逆、求导和积分)

    手动博客搬家: 本文发表于20181125 13:25:03, 原地址https://blog.csdn.net/suncongbo/article/details/84487306 题目链接: ht ...

  3. hdu 5730 Shell Necklace [分治fft | 多项式求逆]

    hdu 5730 Shell Necklace 题意:求递推式\(f_n = \sum_{i=1}^n a_i f_{n-i}\),模313 多么优秀的模板题 可以用分治fft,也可以多项式求逆 分治 ...

  4. BZOJ 4555: [Tjoi2016&Heoi2016]求和 [分治FFT 组合计数 | 多项式求逆]

    4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...

  5. NTT+多项式求逆+多项式开方(BZOJ3625)

    定义多项式$h(x)$的每一项系数$h_i$,为i在c[1]~c[n]中的出现次数. 定义多项式$f(x)$的每一项系数$f_i$,为权值为i的方案数. 通过简单的分析我们可以发现:$f(x)=\fr ...

  6. Re.多项式求逆

    前言 emmm暂无 多项式求逆目的 顾名思义 就是求出一个多项式的摸xn时的逆 给定一个多项式F(x),请求出一个多项式G(x),满足F(x)∗G(x)≡1(modxn),系数对998244353取模 ...

  7. BZOJ 3456: 城市规划 与 多项式求逆算法介绍(多项式求逆, dp)

    题面 求有 \(n\) 个点的无向有标号连通图个数 . \((1 \le n \le 1.3 * 10^5)\) 题解 首先考虑 dp ... 直接算可行的方案数 , 容易算重复 . 我们用总方案数减 ...

  8. 洛谷P4841 城市规划(生成函数 多项式求逆)

    题意 链接 Sol Orz yyb 一开始想的是直接设\(f_i\)表示\(i\)个点的无向联通图个数,枚举最后一个联通块转移,发现有一种情况转移不到... 正解是先设\(g(n)\)表示\(n\)个 ...

  9. LOJ2527 HAOI2018 染色 容斥、生成函数、多项式求逆

    传送门 调了1h竟然是因为1004535809写成了998244353 "恰好有\(K\)种颜色出现了\(S\)次"的限制似乎并不容易达到,考虑容斥计算. 令\(c_j\)表示强制 ...

随机推荐

  1. atom常用插件

    汉化 simplified-chinese-menureact atom-react-snippets-0.5.0polymer atom-polymer-0.13.0polymer Atom-Pol ...

  2. 定位JVM内存溢出问题思路总结

    JVM的内存溢出问题,是个常见而有时候有非常难以定位的问题.定位内存溢出问题常见方法有很多,但是其实很多情况下可供你选择的有效手段非常有限.很多方法在一些实际场景下没有实用价值.这里总结下我的一些定位 ...

  3. eShopOnContainers 看微服务 ②:配置 启动

    一.什么是docker Docker 是一个开源项目,通过把应用程序打包为可移植的.自给自足的容器(可以运行在云端或本地)的方式,实现应用程序的自动化部署. 使用 Docker 的时候,需要创建一个应 ...

  4. 使用wireshark以及filddler配合抓去手机端的TCP以及HTTP请求

    在测试手机客户端时,有时候需要查看网络请求状况.使用在IDE中查看log的方式,能够解决问题,但是会比较复杂.wireshark不能够做代理,而fiddler主要是抓HTTP请求,没有wireshar ...

  5. Java中的包装数据类型

    基本类型 包装器类型 boolean Boolean char Character int Integer byte Byte short Short long Long float Float do ...

  6. JS 高级总结

    一.查找HTML元素 通常,通过 JavaScript,您需要操作 HTML 元素. 1.通过 id 找到 HTML 元素 2.通过标签名找到 HTML 元素 3.通过类名找到 HTML 元素 提示: ...

  7. JAVA中的配置文件XML

    一:概念 1.XML  Extensible markup Language 可拓展标记语言 2.功能:存储数据(配置文件,在网络中传输数据) 3.html和xml的区别 3.1xml标记全是自定义的 ...

  8. centos7源码安装heartbeat可能出现的错误以及解决办法

    问题:ipmilan_command.c: In function 'setup_ipmi_conn':ipmilan_command.c:283:2: error: 'sel_alloc_selec ...

  9. 11. Container With Most Water (JAVA)

    Given n non-negative integers a1, a2, ..., an , where each represents a point at coordinate (i, ai). ...

  10. oracle 执行顺序 select查询优化

    今天把这几天做的练习复习了一下,不知道自己写得代码执行的效率如何以及要如何提高,于是乎上网开始研究一些材料,现整理如下: 首先,要了解在Oracle中Sql语句运行的机制.以下是sql语句的执行步骤: ...