空间金字塔池化技术,

厉害之处,在于使得我们构建的网络,可以输入任意大小的图片,不需要经过裁剪缩放等操作。

是后续许多金字塔技术(psp,aspp等)的起源,主要的目的都是为了获取场景语境信息,获取上下文的联系。

如图所示,对于选择的不同大小的区域对应到卷积之后的特征图上,得到的也是大小不一致的特征图区域,厚度为256,对于每个区域(厚度为256),通过三种划分方式进行池化:

(1)直接对整个区域池化,每层得到一个点,共256个点,构成一个1x256的向量

(2)将区域划分成2x2的格子,每个格子池化,得到一个1x256的向量,共2x2=4个格子,最终得到4个1x256的向量

(3)将区域划分成4x4的格子,每个格子池化,得到一个1x256的向量,共4x4=16个格子,最终得到16个1x256的向量

将三种划分方式池化得到的结果进行拼接,得到(1+4+16)*256=21*256的特征。

SPP做到的效果为:不管输入的图片是什么尺度,都能够正确的传入网络.
   具体思路为:CNN的卷积层是可以处理任意尺度的输入的,只是在全连接层处有限制尺度——

换句话说,如果找到一个方法,在全连接层之前将其输入限制到等长,那么就解决了这个问题.

具体实现方案如图:

如果原图输入是224x224,对于conv5出来后的输出,是13x13x256的,可以理解成有256个这样的filter,每个filter对应一张13x13的activation map.如果像上图那样将activation map pooling成4x4 2x2 1x1三张子图,做max pooling后,出来的特征就是固定长度的(16+4+1)x256那么多的维度了.如果原图的输入不是224x224,出来的特征依然是(16+4+1)x256;直觉地说,可以理解成将原来固定大小为(3x3)窗口的pool5改成了自适应窗口大小,窗口的大小和activation map成比例,保证了经过pooling后出来的feature的长度是一致的.

原文:https://blog.csdn.net/sinat_33486980/article/details/81902746

SPP空间金字塔池化技术的直观理解的更多相关文章

  1. 空间金字塔池化(Spatial Pyramid Pooling, SPP)原理和代码实现(Pytorch)

    想直接看公式的可跳至第三节 3.公式修正 一.为什么需要SPP 首先需要知道为什么会需要SPP. 我们都知道卷积神经网络(CNN)由卷积层和全连接层组成,其中卷积层对于输入数据的大小并没有要求,唯一对 ...

  2. Spatial pyramid pooling (SPP)-net (空间金字塔池化)笔记(转)

    在学习r-cnn系列时,一直看到SPP-net的身影,许多有疑问的地方在这篇论文里找到了答案. 论文:Spatial Pyramid Pooling in Deep Convolutional Net ...

  3. 空间金字塔池化(Spatial Pyramid Pooling,SPP)

    基于空间金字塔池化的卷积神经网络物体检测 原文地址:http://blog.csdn.net/hjimce/article/details/50187655 作者:hjimce 一.相关理论 本篇博文 ...

  4. 【神经网络与深度学习】【计算机视觉】SPPNet-引入空间金字塔池化改进RCNN

    转自: https://zhuanlan.zhihu.com/p/24774302?refer=xiaoleimlnote 继续总结一下RCNN系列.上篇RCNN- 将CNN引入目标检测的开山之作 介 ...

  5. SPPNet论文翻译-空间金字塔池化Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

    http://www.dengfanxin.cn/?p=403 原文地址 我对物体检测的一篇重要著作SPPNet的论文的主要部分进行了翻译工作.SPPNet的初衷非常明晰,就是希望网络对输入的尺寸更加 ...

  6. 空间金字塔池化 ssp-net

    <Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition>,这篇paper提出了空间金字 ...

  7. CVPR 2019|PoolNet:基于池化技术的显著性检测 论文解读

    作者 | 文永亮 研究方向 | 目标检测.GAN 研究动机 ​ 这是一篇发表于CVPR2019的关于显著性目标检测的paper,在U型结构的特征网络中,高层富含语义特征捕获的位置信息在自底向上的传播过 ...

  8. 对象池化技术 org.apache.commons.pool

    恰当地使用对象池化技术,可以有效地减少对象生成和初始化时的消耗,提高系统的运行效率.Jakarta Commons Pool组件提供了一整套用于实现对象池化的框架,以及若干种各具特色的对象池实现,可以 ...

  9. commons-pool2 池化技术探究

    一.前言 我们经常会接触各种池化的技术或者概念,包括对象池.连接池.线程池等,池化技术最大的好处就是实现对象的重复利用,尤其是创建和使用大对象或者宝贵资源(HTTP连接对象,MySQL连接对象)等方面 ...

随机推荐

  1. 详解Zookeeper原理与应用场景

    Zookeeper 分布式协调服务 应用之处:发布.订阅,命名服务,分布式协调和分布式锁 对比 Chubby: Chubby 被定义为 分布式的锁服务 为分布式系统提供 松耦合.粗粒度 的分布式锁功能 ...

  2. js 时间戳转时间工具类 js时间戳与时间互转

    /** * 时间戳格式化函数 * @param {string} format 格式 * @param {int} timestamp 要格式化的时间 默认为当前时间 * @return {strin ...

  3. Spring-Cloud-Ribbon学习笔记(一):入门

    简介 Spring Cloud Ribbon是一个基于Http和TCP的客户端负载均衡工具,它是基于Netflix Ribbon实现的.它不像服务注册中心.配置中心.API网关那样独立部署,但是它几乎 ...

  4. Java-IO基础类回忆

    好记性不如烂笔头,就拿Java IO来说吧,这部分的基础类我大学都已经学过一遍了,但是现在忘记的差不多了,所以准备写一篇博客,讲这些东西都回忆一下,并且整理一下. 首先借用网上的一张图: 纵向分为字节 ...

  5. window alias给cmd命令起别名

    场景: Linux的alias命令是个非常实用的工具,任何命令通过alias可以精简到很短,比如:alias l='ls -l' Windows也有alias类似的命令,就是:doskey,开启方法也 ...

  6. Chrome Google浏览器下载

    https://support.google.com/chrome/answer/95346?co=GENIE.Platform%3DDesktop&hl=zh-Hans    下载和安装 G ...

  7. NW.js 桌面应用程序

    nw.js官网    https://nwjs.io/downloads/ 中文网:https://nwjs.org.cn/ 参考文档 https://www.cnblogs.com/xuanhun/ ...

  8. java源码中的注解

    spring框架源码中充满了注解,如果对注解不是很了解,阅读源码就寸步难行,下面我们来看看annotation.https://blog.csdn.net/briblue/article/detail ...

  9. meta标签大全(荐)

    html的meta总结(常用) 1.Meta标签大全 <!-- 声明文档使用的字符编码 --> <meta charset='utf-8'> <!-- 优先使用 IE 最 ...

  10. 基于 ASP.NET Core 2.1 的 Razor Class Library 实现自定义错误页面的公用类库

    注意:文中使用的是 razor pages ,建议使用 razor views ,使用 razor pages 有一个小坑,razor pages 会用到 {page} 路由参数,如果应用中也用到了这 ...