SPP空间金字塔池化技术的直观理解
空间金字塔池化技术,
厉害之处,在于使得我们构建的网络,可以输入任意大小的图片,不需要经过裁剪缩放等操作。
是后续许多金字塔技术(psp,aspp等)的起源,主要的目的都是为了获取场景语境信息,获取上下文的联系。
如图所示,对于选择的不同大小的区域对应到卷积之后的特征图上,得到的也是大小不一致的特征图区域,厚度为256,对于每个区域(厚度为256),通过三种划分方式进行池化:
(1)直接对整个区域池化,每层得到一个点,共256个点,构成一个1x256的向量
(2)将区域划分成2x2的格子,每个格子池化,得到一个1x256的向量,共2x2=4个格子,最终得到4个1x256的向量
(3)将区域划分成4x4的格子,每个格子池化,得到一个1x256的向量,共4x4=16个格子,最终得到16个1x256的向量
将三种划分方式池化得到的结果进行拼接,得到(1+4+16)*256=21*256的特征。
SPP做到的效果为:不管输入的图片是什么尺度,都能够正确的传入网络.
具体思路为:CNN的卷积层是可以处理任意尺度的输入的,只是在全连接层处有限制尺度——
换句话说,如果找到一个方法,在全连接层之前将其输入限制到等长,那么就解决了这个问题.
具体实现方案如图:
如果原图输入是224x224,对于conv5出来后的输出,是13x13x256的,可以理解成有256个这样的filter,每个filter对应一张13x13的activation map.如果像上图那样将activation map pooling成4x4 2x2 1x1三张子图,做max pooling后,出来的特征就是固定长度的(16+4+1)x256那么多的维度了.如果原图的输入不是224x224,出来的特征依然是(16+4+1)x256;直觉地说,可以理解成将原来固定大小为(3x3)窗口的pool5改成了自适应窗口大小,窗口的大小和activation map成比例,保证了经过pooling后出来的feature的长度是一致的.
原文:https://blog.csdn.net/sinat_33486980/article/details/81902746
SPP空间金字塔池化技术的直观理解的更多相关文章
- 空间金字塔池化(Spatial Pyramid Pooling, SPP)原理和代码实现(Pytorch)
想直接看公式的可跳至第三节 3.公式修正 一.为什么需要SPP 首先需要知道为什么会需要SPP. 我们都知道卷积神经网络(CNN)由卷积层和全连接层组成,其中卷积层对于输入数据的大小并没有要求,唯一对 ...
- Spatial pyramid pooling (SPP)-net (空间金字塔池化)笔记(转)
在学习r-cnn系列时,一直看到SPP-net的身影,许多有疑问的地方在这篇论文里找到了答案. 论文:Spatial Pyramid Pooling in Deep Convolutional Net ...
- 空间金字塔池化(Spatial Pyramid Pooling,SPP)
基于空间金字塔池化的卷积神经网络物体检测 原文地址:http://blog.csdn.net/hjimce/article/details/50187655 作者:hjimce 一.相关理论 本篇博文 ...
- 【神经网络与深度学习】【计算机视觉】SPPNet-引入空间金字塔池化改进RCNN
转自: https://zhuanlan.zhihu.com/p/24774302?refer=xiaoleimlnote 继续总结一下RCNN系列.上篇RCNN- 将CNN引入目标检测的开山之作 介 ...
- SPPNet论文翻译-空间金字塔池化Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
http://www.dengfanxin.cn/?p=403 原文地址 我对物体检测的一篇重要著作SPPNet的论文的主要部分进行了翻译工作.SPPNet的初衷非常明晰,就是希望网络对输入的尺寸更加 ...
- 空间金字塔池化 ssp-net
<Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition>,这篇paper提出了空间金字 ...
- CVPR 2019|PoolNet:基于池化技术的显著性检测 论文解读
作者 | 文永亮 研究方向 | 目标检测.GAN 研究动机 这是一篇发表于CVPR2019的关于显著性目标检测的paper,在U型结构的特征网络中,高层富含语义特征捕获的位置信息在自底向上的传播过 ...
- 对象池化技术 org.apache.commons.pool
恰当地使用对象池化技术,可以有效地减少对象生成和初始化时的消耗,提高系统的运行效率.Jakarta Commons Pool组件提供了一整套用于实现对象池化的框架,以及若干种各具特色的对象池实现,可以 ...
- commons-pool2 池化技术探究
一.前言 我们经常会接触各种池化的技术或者概念,包括对象池.连接池.线程池等,池化技术最大的好处就是实现对象的重复利用,尤其是创建和使用大对象或者宝贵资源(HTTP连接对象,MySQL连接对象)等方面 ...
随机推荐
- Git进阶用法
Git高阶用法 1. 基本概念 你的本地仓库由Git维护的三棵树组成.第一个是你的工作目录,它持有实际文件:第二个是缓存区(Index),它像个缓存区域,临时保存您的改动:最后是HEAD,指向你最近一 ...
- python什么时候加self,什么时候不加self
1.self是什么,一般都说指对象本身,这样说了没了用,说了后还是很难懂,因为这样说了后,仍然完全搞不清楚,什么时候变量前需要加self,什么时候不需要加self. 造成很多人,已经怕了self,不停 ...
- springmvc中为我们做了什么
这应该是每个使用框架的人应该自问的.这就要从没有使用框架时说.在没用框架开发web应用时,自己是怎么开发的,就是写servlet,jsp. 使用springmvc后,使用Controller注解,其实 ...
- Oracle数据库实例的启动及关闭
要启动和关闭数据库,必须要以具有Oracle 管理员权限的用户登陆,通常也就是以具有SYSDBA权限的用户登陆.一般我们常用SYS用户以SYSDBA连接来启动和关闭数据库.下面介绍Oracle数据库几 ...
- create database link
如果本地的tnsnames.ora中未建立数据库连接,那么就是用1,否则就是用2 1:create database link geelyin96 connect to geelyin identif ...
- ApplicaitionContext妙用request解耦合
本文记录一个web应用中,如果要获取request对象怎么获取,本次主要思考来自看到上次文件必须把request对象放进service层导致的疑问,然后学习总结之. 第一,也是我们最常用的,在cont ...
- 微信小程序时间戳的转换及调用
13位 的时间戳,如下图: 效果图: 1.(utils.js里面的代码): function formatTime(timestamp, format) { const formateArr = [' ...
- 日志系统的 ELK 的搭建
https://www.cnblogs.com/yuhuLin/p/7018858.html 快速搭建ELK日志分析系统 一.ELK搭建篇 官网地址:https://www.elastic.co/cn ...
- Oracle课程档案,第十五天
restore:恢复数据文件 recover:写日志 1.redo(roll forward)重做 (前进) 2.undo(roll back) 撤销 (回滚) cp -r:删除一个目录 archiv ...
- Linux基础:用tcpdump抓包(转)
https://segmentfault.com/a/1190000012593192 https://segmentfault.com/a/1190000009691705