SPP空间金字塔池化技术的直观理解
空间金字塔池化技术,
厉害之处,在于使得我们构建的网络,可以输入任意大小的图片,不需要经过裁剪缩放等操作。
是后续许多金字塔技术(psp,aspp等)的起源,主要的目的都是为了获取场景语境信息,获取上下文的联系。

如图所示,对于选择的不同大小的区域对应到卷积之后的特征图上,得到的也是大小不一致的特征图区域,厚度为256,对于每个区域(厚度为256),通过三种划分方式进行池化:
(1)直接对整个区域池化,每层得到一个点,共256个点,构成一个1x256的向量
(2)将区域划分成2x2的格子,每个格子池化,得到一个1x256的向量,共2x2=4个格子,最终得到4个1x256的向量
(3)将区域划分成4x4的格子,每个格子池化,得到一个1x256的向量,共4x4=16个格子,最终得到16个1x256的向量
将三种划分方式池化得到的结果进行拼接,得到(1+4+16)*256=21*256的特征。
SPP做到的效果为:不管输入的图片是什么尺度,都能够正确的传入网络.
具体思路为:CNN的卷积层是可以处理任意尺度的输入的,只是在全连接层处有限制尺度——
换句话说,如果找到一个方法,在全连接层之前将其输入限制到等长,那么就解决了这个问题.
具体实现方案如图:

如果原图输入是224x224,对于conv5出来后的输出,是13x13x256的,可以理解成有256个这样的filter,每个filter对应一张13x13的activation map.如果像上图那样将activation map pooling成4x4 2x2 1x1三张子图,做max pooling后,出来的特征就是固定长度的(16+4+1)x256那么多的维度了.如果原图的输入不是224x224,出来的特征依然是(16+4+1)x256;直觉地说,可以理解成将原来固定大小为(3x3)窗口的pool5改成了自适应窗口大小,窗口的大小和activation map成比例,保证了经过pooling后出来的feature的长度是一致的.
原文:https://blog.csdn.net/sinat_33486980/article/details/81902746
SPP空间金字塔池化技术的直观理解的更多相关文章
- 空间金字塔池化(Spatial Pyramid Pooling, SPP)原理和代码实现(Pytorch)
想直接看公式的可跳至第三节 3.公式修正 一.为什么需要SPP 首先需要知道为什么会需要SPP. 我们都知道卷积神经网络(CNN)由卷积层和全连接层组成,其中卷积层对于输入数据的大小并没有要求,唯一对 ...
- Spatial pyramid pooling (SPP)-net (空间金字塔池化)笔记(转)
在学习r-cnn系列时,一直看到SPP-net的身影,许多有疑问的地方在这篇论文里找到了答案. 论文:Spatial Pyramid Pooling in Deep Convolutional Net ...
- 空间金字塔池化(Spatial Pyramid Pooling,SPP)
基于空间金字塔池化的卷积神经网络物体检测 原文地址:http://blog.csdn.net/hjimce/article/details/50187655 作者:hjimce 一.相关理论 本篇博文 ...
- 【神经网络与深度学习】【计算机视觉】SPPNet-引入空间金字塔池化改进RCNN
转自: https://zhuanlan.zhihu.com/p/24774302?refer=xiaoleimlnote 继续总结一下RCNN系列.上篇RCNN- 将CNN引入目标检测的开山之作 介 ...
- SPPNet论文翻译-空间金字塔池化Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
http://www.dengfanxin.cn/?p=403 原文地址 我对物体检测的一篇重要著作SPPNet的论文的主要部分进行了翻译工作.SPPNet的初衷非常明晰,就是希望网络对输入的尺寸更加 ...
- 空间金字塔池化 ssp-net
<Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition>,这篇paper提出了空间金字 ...
- CVPR 2019|PoolNet:基于池化技术的显著性检测 论文解读
作者 | 文永亮 研究方向 | 目标检测.GAN 研究动机 这是一篇发表于CVPR2019的关于显著性目标检测的paper,在U型结构的特征网络中,高层富含语义特征捕获的位置信息在自底向上的传播过 ...
- 对象池化技术 org.apache.commons.pool
恰当地使用对象池化技术,可以有效地减少对象生成和初始化时的消耗,提高系统的运行效率.Jakarta Commons Pool组件提供了一整套用于实现对象池化的框架,以及若干种各具特色的对象池实现,可以 ...
- commons-pool2 池化技术探究
一.前言 我们经常会接触各种池化的技术或者概念,包括对象池.连接池.线程池等,池化技术最大的好处就是实现对象的重复利用,尤其是创建和使用大对象或者宝贵资源(HTTP连接对象,MySQL连接对象)等方面 ...
随机推荐
- 详解Zookeeper原理与应用场景
Zookeeper 分布式协调服务 应用之处:发布.订阅,命名服务,分布式协调和分布式锁 对比 Chubby: Chubby 被定义为 分布式的锁服务 为分布式系统提供 松耦合.粗粒度 的分布式锁功能 ...
- js 时间戳转时间工具类 js时间戳与时间互转
/** * 时间戳格式化函数 * @param {string} format 格式 * @param {int} timestamp 要格式化的时间 默认为当前时间 * @return {strin ...
- Spring-Cloud-Ribbon学习笔记(一):入门
简介 Spring Cloud Ribbon是一个基于Http和TCP的客户端负载均衡工具,它是基于Netflix Ribbon实现的.它不像服务注册中心.配置中心.API网关那样独立部署,但是它几乎 ...
- Java-IO基础类回忆
好记性不如烂笔头,就拿Java IO来说吧,这部分的基础类我大学都已经学过一遍了,但是现在忘记的差不多了,所以准备写一篇博客,讲这些东西都回忆一下,并且整理一下. 首先借用网上的一张图: 纵向分为字节 ...
- window alias给cmd命令起别名
场景: Linux的alias命令是个非常实用的工具,任何命令通过alias可以精简到很短,比如:alias l='ls -l' Windows也有alias类似的命令,就是:doskey,开启方法也 ...
- Chrome Google浏览器下载
https://support.google.com/chrome/answer/95346?co=GENIE.Platform%3DDesktop&hl=zh-Hans 下载和安装 G ...
- NW.js 桌面应用程序
nw.js官网 https://nwjs.io/downloads/ 中文网:https://nwjs.org.cn/ 参考文档 https://www.cnblogs.com/xuanhun/ ...
- java源码中的注解
spring框架源码中充满了注解,如果对注解不是很了解,阅读源码就寸步难行,下面我们来看看annotation.https://blog.csdn.net/briblue/article/detail ...
- meta标签大全(荐)
html的meta总结(常用) 1.Meta标签大全 <!-- 声明文档使用的字符编码 --> <meta charset='utf-8'> <!-- 优先使用 IE 最 ...
- 基于 ASP.NET Core 2.1 的 Razor Class Library 实现自定义错误页面的公用类库
注意:文中使用的是 razor pages ,建议使用 razor views ,使用 razor pages 有一个小坑,razor pages 会用到 {page} 路由参数,如果应用中也用到了这 ...