程序员进阶之算法练习:LeetCode专场
欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~
本文由落影发表
前言
LeetCode上的题目是大公司面试常见的算法题,今天的目标是拿下5道算法题: 题目1是基于链表的大数加法,既考察基本数据结构的了解,又考察在处理加法过程中的边界处理; 题目2是求数组出现频率前k大的数字,考察思维能力,代码很短; 题目3是给出从两个数组中选择数字,组成一个最大的数字,考察的是贪心的思想; 前三个都偏向于考察想法,实现的代码都比较简单; 题目4、5是数据结构实现题,也是大部分人比较头疼的题目,因为需要较多的数据结构和STL实现,并且还有时间和空间的限制。
正文
1、Add Two Numbers II
题目链接 题目大意:
给俩个链表,节点由0~9的数字组成,分别表示两个数字; 求出两个数字的和,以链表的形式返回。
例如
Input: (7 -> 2 -> 4 -> 3) + (5 -> 6 -> 4)
7243 + 564 =7807
Output: 7 -> 8 -> 0 -> 7
题目解析: 题目的意思很明显,就是把两个数字加起来,需要考虑进位的情况。 因为是单向的链表,遍历后很难回溯,所以先把数字存到vec中。 并且为了处理方便,vec的最低位存在vec的起始部分。 于是从0开始遍历两个vec即可,注意考虑最后进位的情况。
复杂度解析: 时间复杂度是O(N) 空间复杂度是O(N)
struct ListNode {
int val;
ListNode *next;
ListNode(int x) : val(x), next(NULL) {}
};
class Solution {
public:
ListNode* addTwoNumbers(ListNode* l1, ListNode* l2) {
ListNode *ret = NULL;
vector<int> vec1, vec2;
sum(l1, vec1);
sum(l2, vec2);
int n = vec1.size(), m = vec2.size(), flag = 0;
for (int i = 0; i < n || i < m; ++i) {
int x = 0, y = 0;
if (i < n) {
x = vec1[i];
}
if (i < m) {
y = vec2[i];
}
int s = x + y + flag;
if (s > 9) {
s -= 10;
flag = 1;
}
else {
flag = 0;
}
ListNode *tmp = new ListNode(s);
tmp->next = ret;
ret = tmp;
}
if (flag) {
ListNode *tmp = new ListNode(1);
tmp->next = ret;
ret = tmp;
}
return ret;
}
void sum(ListNode* list, vector<int> &vec) {
if (list->next) {
sum(list->next, vec);
}
vec.push_back(list->val);
}
};
2.Top K Frequent Elements
题目链接 题目大意:
给出一个数组和一个数字k,返回按数字出现频率的前k个的数字; 1 <= k <= n, n是数组大小;
example,
Given [1,1,1,2,2,3] and k = 2, return [1,2].
题目解析:
题目分为两个步骤: 1、统计每个数字的出现次数; 2、从中选择k个次数最多的数字;
一个简单的做法: 用哈希表统计每个数字的出现次数; 把每个数字的出现次数和数字组成一个pair,放入优先队列;
这样从优先队列中取出k个即可。
复杂度解析: 时间复杂度是O(NlogN),主要在最后的优先队列。
其他解法: 有一个O(NlogK)的优化; 首先把队列变成最小有限队列, 每次pair放入优先对时,如果当前的size大于k,那么弹出top; 这样每次的操作从O(logN)变成O(logK)。
class Solution {
public:
vector<int> topKFrequent(vector<int>& nums, int k) {
unordered_map<int, int> numsHash;
for (int i = 0; i < nums.size(); ++i) {
++numsHash[nums[i]];
}
priority_queue<pair<int, int>> q;
for (int i = 0; i < nums.size(); ++i) {
if(numsHash[nums[i]]) {
q.push(make_pair(numsHash[nums[i]], nums[i]));
numsHash[nums[i]] = 0;
}
}
vector<int> ret;
for (int i = 0; i < k; ++i) {
ret.push_back(q.top().second);
q.pop();
}
return ret;
}
}leetcode;
3、create-maximum-number
题目链接 题目大意: 给出两个数组,数组只包括0~9十个数字,长度分别为n、m; 从两个数组中选出k个数,组成一个长度为k的数字,要求: 1、从数组n、m选择出来的数字相对位置不变; 2、最后的数字最大; 输出最后的数字。
Example 1:
nums1 = [3, 4, 6, 5]
nums2 = [9, 1, 2, 5, 8, 3]
k = 5
return [9, 8, 6, 5, 3]
Example 2:
nums1 = [6, 7]
nums2 = [6, 0, 4]
k = 5
return [6, 7, 6, 0, 4]
题目解析:
要求最后数字最大,那么尽可能把数字大的排在前面; 在都合法的前提下,99* 肯定比 98*要大; 那么可以按照这样的贪心策略: 先枚举t,t表示从数组nums1中选出t个数字,那么数组nums2中应该选出k-t个数字; 两个数组的所有数字组成最大的数字,因为两个数组间的数字是可以任意顺序,那么只需每次选择较大的放在前面即可。
问题简化成,O(N)每次从数组中选出t个最大的数字; 这个可以用贪心解决: 假设数组当前枚举到第i个,且nums[i]=x; 从左到右遍历已经选择的数,当遇到一个数字t,t<x时,判断插入x后,后续是否存在合法解;如果存在则替换,否则直到最后,插入尾部;
class Solution {
public:
vector<int> maxNumber(vector<int>& nums1, vector<int>& nums2, int k) {
int n = (int)nums1.size(), m = (int)nums2.size();
vector<int> ret(k, 0);
for (int i = max(0, k - m); i <= k && i <= n; ++i) {
vector<int> tmp1 = maxArray(nums1, i);
vector<int> tmp2 = maxArray(nums2, k - i);
vector<int> tmp = merge(tmp1, tmp2, k);
if (greater(tmp, 0, ret, 0)) {
ret = tmp;
}
}
return ret;
}
vector<int> maxArray(vector<int> &nums, int k) {
int n = (int)nums.size();
vector<int> ret(k, 0);
for (int i = 0, j = 0; i < n; ++i) {
while (n - i + j > k && j > 0 && ret[j - 1] < nums[i]) {
--j;
}
if (j < k) {
ret[j++] = nums[i];
}
}
return ret;
}
vector<int> merge(vector<int>& nums1, vector<int>& nums2, int k) {
vector<int> ret(k, 0);
for (int i = 0, j = 0, r = 0; r < k; ++r) {
ret[r] = greater(nums1, i, nums2, j) ? nums1[i++] : nums2[j++];
}
return ret;
}
bool greater(vector<int> &nums1, int i, vector<int> &nums2, int j) {
while (i < nums1.size() && j < nums2.size() && nums1[i] == nums2[j]) {
++i;
++j;
}
return j == nums2.size() || (i < nums1.size() && nums1[i] > nums2[j]);
}
};
4、 Insert Delete GetRandom O(1) - Duplicates allowed
题目链接 题目大意: 实现一个数据结构,包括以下三个方法: 1、insert(val): 插入一个数字; 2、remove(val): 移除一个数字; 3、getRandom: O(1)随机返回一个数字;
Example
插入数字1;
collection.insert(1);
插入数字1:
collection.insert(1);
插入数字2
collection.insert(2);
随机返回数字,要求 2/3可能返回1, 1/3可能返回2;
collection.getRandom();
题目解析:
插入和移除数字不麻烦,考虑如何在O(1)时间返回一个数字。 容易知道,放在数组里面可以,然后随机返回一个位置可以实现。 增加可以在数组最末端增加; 删除数组中间某个数字时,可以把最末端的数字放到删除的位置上;
现在的问题是,如何快速找到数组中该删除的某个位置; 考虑用hash来实现。 数组就是vector<pair<int, int> >; first存val,second存出现次数; 再用一个哈希map,unordered_map<int, vector> 里面存对应数字出现的位置;
class RandomizedCollection {
public:
/** Initialize your data structure here. */
RandomizedCollection() {
}
/** Inserts a value to the collection. Returns true if the collection did not already contain the specified element. */
bool insert(int val) {
bool ret = hashMap.find(val) == hashMap.end();
hashMap[val].push_back(randVec.size());
randVec.push_back(make_pair(val, hashMap[val].size() - 1));
return ret;
}
/** Removes a value from the collection. Returns true if the collection contained the specified element. */
bool remove(int val) {
bool ret = hashMap.find(val) != hashMap.end();
if (ret) {
auto last = randVec.back();
hashMap[last.first][last.second] = hashMap[val].back();
randVec[hashMap[val].back()] = last;
hashMap[val].pop_back();
if (hashMap[val].empty()) {
hashMap.erase(val);
}
randVec.pop_back();
}
return ret;
}
/** Get a random element from the collection. */
int getRandom() {
return randVec[rand() % randVec.size()].first;
}
private:
unordered_map<int, vector<int>> hashMap;
vector<pair<int, int>> randVec;
}leetcode;
5、 All O`one Data Structure
题目链接 题目大意:
实现一个数据结构,要求: 1、Inc(Key) - Inserts a new key with value 1. Or increments an existing key by 1. Key is guaranteed to be a non-empty string. 2、Dec(Key) - If Key's value is 1, remove it from the data structure. Otherwise decrements an existing key by 1. If the key does not exist, this function does nothing. Key is guaranteed to be a non-empty string. 3、GetMaxKey() - Returns one of the keys with maximal value. If no element exists, return an empty string "". 4、GetMinKey() - Returns one of the keys with minimal value. If no element exists, return an empty string "".
要求所有的数据结构的时间复杂度是O(1);
题目解析:
在不考虑复杂度的前提下,朴素做法是遍历,O(N); 简单的优化,用map来维护优先队列,操作1、2先获取key值,更新完重新插入;操作3、4直接拿队列top;每个操作的复杂度是O(LogN);
题目要求是O(1),那么必然不能使用树类型的结构,应该利用题目特性,配合hash以及贪心来实现。
假设有一个key-hash表,来存key的对应值。 操作1、先看keyHash里面是否有key,有则+1,无则插入; 操作2、先看keyHash里面是否有key,有则-1,无则Nothing;
为了维护最值,引入链表list,里面所有的元素是从小到大;每个元素是一个桶,桶里放着值相同的key; 操作3、直接获取list头元素的值; 操作4、直接获取list尾元素的值;
同时,操作1、2在操作的过程中,需要把当前key值从list对应的桶里移除,放到上一个或者下一个桶里,或者丢弃。 为了实现O(1)获取key所在位置,可以用iter-hash来维护key所对应元素的迭代器。
struct Bucket {
int value;
unordered_set<string> keys;
};
class AllOne {
public:
list<Bucket> buckets;
unordered_map<string, list<Bucket>::iterator> bucketOfKey;
/** Initialize your data structure here. */
AllOne() {
}
/** Inserts a new key <Key> with value 1. Or increments an existing key by 1. */
void inc(string key) {
if (bucketOfKey.find(key) == bucketOfKey.end()) {
bucketOfKey[key] = buckets.insert(buckets.begin(), {0, {key}});
}
auto next = bucketOfKey[key], bucket = next++;
if (next == buckets.end() || next->value > bucket->value + 1) {
next = buckets.insert(next, {bucket->value+1, {}});
}
next->keys.insert(key);
bucketOfKey[key] = next;
bucket->keys.erase(key);
if (bucket->keys.empty()) {
buckets.erase(bucket);
}
}
/** Decrements an existing key by 1. If Key's value is 1, remove it from the data structure. */
void dec(string key) {
if (bucketOfKey.find(key) == bucketOfKey.end()) {
return ;
}
auto pre = bucketOfKey[key], bucket = pre;
if (pre != buckets.begin()) {
--pre;
}
bucketOfKey.erase(key);
if (bucket->value > 1) {
if (bucket == buckets.begin() || pre->value < bucket->value - 1) {
pre = buckets.insert(bucket, {bucket->value - 1, {}});
}
pre->keys.insert(key);
bucketOfKey[key] = pre;
}
bucket->keys.erase(key);
if (bucket->keys.empty()) {
buckets.erase(bucket);
}
}
/** Returns one of the keys with maximal value. */
string getMaxKey() {
return buckets.empty() ? "" : *(buckets.rbegin()->keys.begin());
}
/** Returns one of the keys with Minimal value. */
string getMinKey() {
return buckets.empty() ? "" : *(buckets.begin()->keys.begin());
}
}leetcode;
总结
这5个题目如果都能独立完成,那么水平已经可以足以应付国内各大企业的算法面。 算法重在勤思多练,埋怨公司出算法题是没用的,多花时间准备才是正道。
此文已由作者授权腾讯云+社区发布,更多原文请点击
搜索关注公众号「云加社区」,第一时间获取技术干货,关注后回复1024 送你一份技术课程大礼包!
程序员进阶之算法练习:LeetCode专场的更多相关文章
- PHP程序员进阶学习书籍参考指南
PHP程序员进阶学习书籍参考指南 @heiyeluren lastmodify: 2016/2/18 [初阶](基础知识及入门) 01. <PHP与MySQL程序设计(第4版)> ...
- 谈谈Java程序员进阶的那些知识和方向
谈谈Java程序员进阶的那些知识和方向 记得前段时间看过一篇文章谈到一种程序员叫野生程序员,战斗力极强,可以搞定一切问题,但是通常看问题抓不到本质,或者说是google/baidu/stackover ...
- windows程序员进阶系列:《软件调试》之堆 (一)
windows程序员进阶系列:<软件调试>之堆 (一) 堆是软件在运行时动态申请内存空间的主要途径.从堆上申请来的空间需要程序员自己申请和释放,且申请和释放操作必须绝对匹配.忘记释放或者多 ...
- C++高级程序员进阶之路
一.自学成为高级程序员推荐看的书: 1.c语言基础 <c primer Plus>.<c和指针>.<C专家编程> 2.C++语言基础 <C++ Primer& ...
- Java程序员进阶路线-高级java程序员养成
1. 引言 搞Java的弟兄们肯定都想要达到更高的境界,用更少的代码解决更多的问题,用更清晰的结构为可能的传承和维护做准备.想想当初自己摸着石头过河,也看过不少人介绍的学习路线,十多年走过来多少还是有 ...
- Java程序员进阶架构师推荐阅读书籍
[IT168 技术]作为Java程序员来说,最痛苦的事情莫过于可以选择的范围太广,可以读的书太多,往往容易无所适从.我想就我自己读过的技术书籍中挑选出来一些,按照学习的先后顺序,推荐给大家,特别是那些 ...
- 【转载】PHP 程序员进阶之路
原文:没有Nginx,你还能做什么? PHP程序员的未来不是Java,Java拯救不了你. 已经1368年了,你扪胸自问,没有了Nginx的你,还能用PHP做什么.有一些高端的刁民会愤怒地说:&quo ...
- windows程序员进阶系列:《软件调试》之Win32堆的调试支持
Win32堆的调试支持 为了帮助程序员及时发现堆中的问题,堆管理器提供了以下功能来辅助调试. 1:堆尾检查(Heap Tail Check) HTC,在堆尾添加额外的标记信息,用于检测堆块是否溢出. ...
- windows程序员进阶系列:《软件调试》之Win32堆
win32堆及内部结构 Windows在创建一个新的进程时会为该进程创建第一个堆,被称为进程的默认堆.默认堆的句柄会被保存在进程环境块_PEB的ProcessHeap字段中. 要获得_PEB的地址, ...
随机推荐
- 批量屏蔽符合条件的IP地址《目前仅测Centos 6 版本》
使用办法:可以将下面的sh保存到一个单独的文件中,比如ipad.sh,然后再编辑获取IP地址列表中的那段.最终的结果是需要直接获取到IP地址,一行一个,可以有多个文件,一行一个,进行重定向到指定的IP ...
- 实战Python实现BT种子转化为磁力链接
经常看电影的朋友肯定对BT种子并不陌生,但是BT种子文件相对磁力链来说存储不方便,而且在网站上存放BT文件容易引起版权纠纷,而磁力链相对来说则风险小一些. 将BT种子转换为占用空间更小,分享更方便的磁 ...
- xsd
2018-10-08 <xsd:annotation> <xsd:documentation> <![CDATA[ 说明文档 ]]> </xsd:docume ...
- AX_Dialog
Dialog dialog = new Dialog("@SYS1052"); DialogField ...
- oracle序列的使用
第一天:序列的使用 在oracle中sequence就是所谓的序列号,每次取的时候它会自动增加,一般用在需要按序列号排序的地方. 1.Create Sequence 你首先要有CREATE SEQ ...
- MD5=======RBAC权限管理
经过网上查阅相关的说明原来,MD5全名Message-Digest Algorithm 5(信息-摘要算法)是一种不可逆的加密算法. MD5为计算机安全领域广泛使用的一种散列函数,用以提供消息的完整性 ...
- 《Linux就该这么学》第五天课程
今天我很迷茫! 一下是一些命令的整合 原创地址:https://www.linuxprobe.com/chapter-04.html 下面是Linux系统中最重要的10个环境变量 变量名称 作用 HO ...
- 获取IP地址方法
function getip() { static $ip = ''; $ip = $_SERVER['REMOTE_ADDR']; if(isset($_SERVER['HT ...
- 人工智能必须要知道的语义分割模型:DeepLabv3+
图像分割是计算机视觉中除了分类和检测外的另一项基本任务,它意味着要将图片根据内容分割成不同的块.相比图像分类和检测,分割是一项更精细的工作,因为需要对每个像素点分类,如下图的街景分割,由于对每个像素点 ...
- 2017CS231n学习笔记——计算机视觉的概述
本节课主要讲述了cs231n课程的背景和计算机视觉的历史,也主要介绍了目前很重要的一个计算机视觉数据集--IMAGENET. 更多内容参考我的AI学习之路 课程简介 这门课程是由stanford大学计 ...