[Codeforces613E]Puzzle Lover
Problem
给你2*n的格子,每个格子有一个字母,从任意一点出发,不重复的经过上下左右,生成要求的字符串。问有几种不同的走法。
Solution
分三段,左U型、中间、右U型。
分别枚举左边和右边的长度,中间一段用Dp来解决。
Dp[i][j][k],i,j,k表示当前在(i,j)位置,枚举到第k个字符。
Notice
特殊情况下有重复。
Code
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define sqz main
#define ll long long
#define reg register int
#define rep(i, a, b) for (reg i = a; i <= b; i++)
#define per(i, a, b) for (reg i = a; i >= b; i--)
#define travel(i, u) for (reg i = head[u]; i; i = edge[i].next)
const int INF = 1e9, mod = 1e9 + 7, Ha = 826036489, N = 2000;
const double eps = 1e-6, phi = acos(-1.0);
ll modd(ll a, ll b) {if (a >= b || a < 0) a %= b; if (a < 0) a += b; return a;}
ll read(){ ll x = 0; int zf = 1; char ch; while (ch != '-' && (ch < '0' || ch > '9')) ch = getchar();
if (ch == '-') zf = -1, ch = getchar(); while (ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); return x * zf;}
void write(ll y) { if (y < 0) putchar('-'), y = -y; if (y > 9) write(y / 10); putchar(y % 10 + '0');}
char S[2][N + 5], st[N + 5];
ll f[2][N + 5][N + 5], mi[N + 5];
int n, m;
void Calc(ll &X, ll Y)
{
X += Y;
if (X >= mod) X -= mod;
}
struct Hash
{
ll hash[N + 5];
void Make(int n, char *s)
{
hash[0] = 0;
rep(i, 1, n) hash[i] = (hash[i - 1] * 31 + s[i] - 'a') % Ha;
}
ll Cut(int l, int r)
{
return (hash[r] - hash[l - 1] * mi[r - l + 1] % Ha + Ha) % Ha;
}
}pre[2], suf[2], Comp;
ll Solve(int flag)
{
ll T = 0;
memset(f, 0, sizeof(f));
rep(j, 1, n)
{
f[0][j][0] = f[1][j][0] = 1;
rep(i, 0, 1)
{
rep(k, 2, min(n - j + 1, m / 2))
if (Comp.Cut(m - 2 * k + 1, m - k) == pre[i].Cut(j, j + k - 1) && Comp.Cut(m - k + 1, m) == suf[1 - i].Cut(n - (j + k - 1) + 1, n - j + 1))
if (2 * k != m || flag) Calc(T, f[i][j][m - 2 * k]);
rep(k, 2, min(j, m / 2))
if (Comp.Cut(k + 1, 2 * k) == pre[i].Cut(j - k + 1, j) && Comp.Cut(1, k) == suf[1 - i].Cut(n - j + 1, n - (j - k + 1) + 1))
if (2 * k != m || flag) Calc(f[i][j + 1][2 * k], 1);
}
rep(i, 0, 1)
rep(k, 0, m - 1)
if (S[i][j] == st[k + 1])
{
Calc(f[i][j + 1][k + 1], f[i][j][k]);
if (k + 2 <= m && S[1 - i][j] == st[k + 2])
Calc(f[1 - i][j + 1][k + 2], f[i][j][k]);
}
rep(i, 0, 1) Calc(T, f[i][j + 1][m]);
}
return T;
}
int sqz()
{
scanf("%s%s%s", S[0] + 1, S[1] + 1, st + 1);
n = strlen(S[0] + 1), m = strlen(st + 1);
mi[0] = 1;
rep(i, 1, 2000) mi[i] = (mi[i - 1] * 31) % Ha;
rep(i, 0, 1)
{
pre[i].Make(n, S[i]);
reverse(S[i] + 1, S[i] + n + 1);
suf[i].Make(n, S[i]);
reverse(S[i] + 1, S[i] + n + 1);
}
Comp.Make(m, st);
if (m == 1)
{
printf("%I64d\n", Solve(1) % mod);
return 0;
}
ll ans = 0;
Calc(ans, Solve(1));
reverse(st + 1, st + m + 1);
Comp.Make(m, st);
Calc(ans, Solve(0));
if (m == 2)
rep(i, 1, n)
{
if (S[0][i] == st[1] && S[1][i] == st[2]) Calc(ans, mod - 1);
if (S[1][i] == st[1] && S[0][i] == st[2]) Calc(ans, mod - 1);
}
printf("%I64d\n", ans);
return 0;
}
[Codeforces613E]Puzzle Lover的更多相关文章
- CF613E Puzzle Lover
题意 英文版题面 Problems Submit Status Standings Custom test .input-output-copier { font-size: 1.2rem; floa ...
- cf 613E - Puzzle Lover
Description 一个\(2*n\)的方格矩阵,每个格子里有一个字符 给定一个长度为\(m\)的字符串\(s\) 求在方格矩阵中,有多少种走法能走出字符串\(s\) 一种合法的走法定义为:从任意 ...
- 题解 CF613E Puzzle Lover
解题思路 其实仔细观察我们可以发现路径一定是一个类似于下图的一个左括号之后中间随便反复曲折,然后右边在来一个右括号. 然后对于两个括号形状的东西其实是可以利用 Hash 来判等特殊处理的. 对于中间的 ...
- codeforces613E
Puzzle Lover CodeForces - 613E Oleg Petrov loves crossword puzzles and every Thursday he buys his fa ...
- cf Round 613
A.Peter and Snow Blower(计算几何) 给定一个点和一个多边形,求出这个多边形绕这个点旋转一圈后形成的面积.保证这个点不在多边形内. 画个图能明白 这个图形是一个圆环,那么就是这个 ...
- 多校联训 DP 专题
[UR #20]跳蚤电话 将加边变为加点,方案数为 \((n-1)!\) 除以一个数,\(dp\) 每种方案要除的数之和即可. 点击查看代码 #include<bits/stdc++.h> ...
- Puzzle 面向服务/切面(AOP/IOC)开发框架 For .Net
Puzzle 面向服务/切面AOP开发框架 For .Net AOP主要实现的目的是针对业务处理过程中的切面进行提取,它所面对的是处理过程中的某个步骤或阶段,以获得逻辑过程中各部分之间低耦合性的隔离效 ...
- HDU5456 Matches Puzzle Game(DP)
题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5456 Description As an exciting puzzle game for ...
- one recursive approach for 3, hdu 1016 (with an improved version) , permutations, N-Queens puzzle 分类: hdoj 2015-07-19 16:49 86人阅读 评论(0) 收藏
one recursive approach to solve hdu 1016, list all permutations, solve N-Queens puzzle. reference: t ...
随机推荐
- 微信小程序获取用户手机号详解
最近在做一款微信小程序,需要获取用户手机号,具体步骤如下: 流程图: 1.首先,客户端调用wx.login,回调数据了包含jscode,用于获取openid(用户唯一标识)和sessionkey(会话 ...
- js中字符替换函数String.replace()使用技巧
定义和用法 replace() 方法用于在字符串中用一些字符替换另一些字符,或替换一个与正则表达式匹配的子串. 语法 stringObject.replace(regexp/substr,replac ...
- 艾妮记账本Web开发(开发版)
因为没有办法制作微信小程序版的艾妮记账本所以只能选择做Web开发版,但因为是花时间赶出来到的(但用了我已学的所有Web知识)所以就没有办法按老师的要求写七天的制作过程. 其实真正说起来我的这个Web开 ...
- EasyUI出现多条边框重合的问题
比如在 下面使用一个datagrid表格,可能出现某几条边框重合的问题,这种情况需要在div一层的panel添加"border:false"属性,datagrid不做处理即可
- MongoDB运维心得(一)
问题:集群内部通信压力较大.出现在某一个节点创建普通表并插入数据,在其他点读的问题.会造成每次读表都要进行一次完整的数据传输. 前提: Mongodb处于Sharding Cluster状态. 造成原 ...
- 服务器日志文件Web远程查看
公司买的一款企业应用软件,所有透过应用操作DB的操作都会生成有日志,日志是以文本文件的形式存放在服务器上,后缀名为*.log.1,*.log.2之类的,软件本身也提供功能查询这些日志,但这个查询的功能 ...
- CRT/LCD/VGA Information and Timing
彩色阴极射线管的剖面图: 1. 电子QIANG Three Electron guns (for red, green, and blue phosphor dots)2. 电子束 Electron ...
- 给zabbix添加percona监控模板
简单说明一下给zabbix添加的percona的监控模板. 在percona官方网站有说明怎么安装,这里记录下步骤.首先搭建好的zabbix环境. 监控插件连接 : 链接:https://pan.ba ...
- c#查找窗口的两种办法
原文最早发表于百度空间2009-06-17 1.process.MainWindowTitle(这个只能获取一部分窗口)2.EnumWindows(用windows API)
- Python socket粘包解决
socket粘包: socket 交互send时,连续处理多个send时会出现粘包,soket会把两条send作为一条send强制发送,会粘在一起. send发送会根据recv定义的数值发送一个固定的 ...