洛谷 P2158 [SDOI2008]仪仗队 解题报告
P2158 [SDOI2008]仪仗队
题目描述
作为体育委员,C君负责这次运动会仪仗队的训练。仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐(如下图)。 现在,C君希望你告诉他队伍整齐时能看到的学生人数。
输入输出格式
输入格式:
共一个数N
输出格式:
共一个数,即C君应看到的学生人数。
说明
对于 100% 的数据,1 ≤ N ≤ 40000
今天看了一天的欧拉函数,明天月考放飞自我了...
对于欧拉函数
将正整数\(N\)用算术基本定理进行分解\(N=\prod_{i=1}^k{c_i}^{m_i}\),\(k\)为\(N\)分解质因数后的质因子种类的个数。
则\(φ(N)=N* \prod_{i=1}^{k} (1-\frac{1}{c_i})\)
证明方法需要用到容斥原理。
几个性质:
若\(gcd(a,b)=1\),则\(φ(ab)=φ(a)*φ(b)\)
积性函数定义啊。若质数\(q\)满足\(q|n\)且\(q^2|n\),则\(φ(q)=φ(n/q)*q\)
代入定义式可以得到若质数\(q\)满足\(q|n\)且\(q^2 \nmid n\),则\(φ(q)=φ(n/q)*(q-1)\)
由积性函数性质得到\(\sum_{d|n}φ(d)=n\)
先证明是积性函数,再讨论单因子即可\(φ(n)*n/2=\sum_{d},gcd(d,n)=1\)
成对存在
在看看这题。
我们以左下角为原点,第一行为\(x\)轴,第一列为\(y\)轴。
则若点\((x,y)\)能被看见,则\((dx,dy)\),\(d \in N^*\)会被遮挡
则点\((x,y)\)能被看见的条件为\(gcd(x,y)=1\),即它们互质。
那么对此,我们可以将我们要求的转换为\(\sum_{i=2}^n φ(i)\)
当然这只是右下角的一部分。
加上(0,1),(1,1),(1,0)三个点,最终答案为\(3+2*(\sum_{i=2}^n φ(i))\)
对于欧拉函数的求和,我们可以借助线性筛的思想做到线性的复杂度
可以参考代码。
code:
#include <cstdio>
const int N=40010;
int v[N],prime[N],eu[N],cnt=0,ans=0,n;
void eular()
{
for(int i=2;i<=n;i++)
{
if(!v[i])
{
v[i]=i;
prime[++cnt]=i;
eu[i]=i-1;
ans+=eu[i];
}
for(int j=1;j<=cnt;j++)
{
int tmp=i*prime[j];
if(v[i]<prime[j]||tmp>n) break;
v[tmp]=prime[j];
eu[tmp]=eu[i]*(i%prime[j]?prime[j]-1:prime[j]);
ans+=eu[tmp];
}
}
}
int main()
{
scanf("%d",&n);
n--;
if(!n) {printf("0\n");return 0;}
eular();
printf("%d\n",(ans<<1)+3);
return 0;
}
2018.5.28
洛谷 P2158 [SDOI2008]仪仗队 解题报告的更多相关文章
- 洛谷——P2158 [SDOI2008]仪仗队
P2158 [SDOI2008]仪仗队 找规律大水题嘛,如果你做过P1170 兔八哥与猎人 这题得到的规律是$a,b,c,d$,若$gcd(a-b,c-d)==1$ 那么$a,b$就能看到$c,d$ ...
- 洛谷P2158 [SDOI2008]仪仗队
题目描述 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐(如下图 ...
- 洛谷 P2158 [SDOI2008]仪仗队 && 洛谷 P1447 [NOI2010]能量采集
https://www.luogu.org/problemnew/show/P2158 以人所在位置为(0,0)建立坐标系, 显然除了(0,1)和(1,0)外,可以只在坐标(x,y)的gcd(x,y) ...
- 洛谷P2158 [SDOI2008]仪仗队 欧拉函数的应用
https://www.luogu.org/problem/P2158 #include<bits/stdc++.h> #define int long long using namesp ...
- 洛谷 P2158 [SDOI2008]仪仗队
题意简述 给定一个n,求gcd(x, y) = 1(x, y <= n)的(x, y)个数 题解思路 欧拉函数, 则gcd(x, y) = 1(x <= y <= n)的个数 ans ...
- 洛谷 P1783 海滩防御 解题报告
P1783 海滩防御 题目描述 WLP同学最近迷上了一款网络联机对战游戏(终于知道为毛JOHNKRAM每天刷洛谷效率那么低了),但是他却为了这个游戏很苦恼,因为他在海边的造船厂和仓库总是被敌方派人偷袭 ...
- 洛谷 P4597 序列sequence 解题报告
P4597 序列sequence 题目背景 原题\(\tt{cf13c}\)数据加强版 题目描述 给定一个序列,每次操作可以把某个数\(+1\)或\(-1\).要求把序列变成非降数列.而且要求修改后的 ...
- 洛谷1087 FBI树 解题报告
洛谷1087 FBI树 本题地址:http://www.luogu.org/problem/show?pid=1087 题目描述 我们可以把由“0”和“1”组成的字符串分为三类:全“0”串称为B串,全 ...
- 洛谷 P3349 [ZJOI2016]小星星 解题报告
P3349 [ZJOI2016]小星星 题目描述 小\(Y\)是一个心灵手巧的女孩子,她喜欢手工制作一些小饰品.她有\(n\)颗小星星,用\(m\)条彩色的细线串了起来,每条细线连着两颗小星星. 有一 ...
随机推荐
- C#的RSA加密解密签名,就为了支持PEM PKCS#8格式密钥对的导入导出
差点造了一整个轮子 .Net Framework 4.5 里面的RSA功能,并未提供简单对PEM密钥格式的支持(.Net Core有咩?),差点(还远着)造了一整个轮子,就为了支持PEM PKCS#8 ...
- 【适配整理】Android 7.0 调取系统相机崩溃解决android.os.FileUriExposedException
一.写在前面 最近由于廖子尧忙于自己公司的事情和 OkGo (一款专注于让网络请求更简单的网络框架) ,故让LZ 接替维护 ImagePicker(一款支持单.多选.旋转和裁剪的图片选择器),也是处理 ...
- “论 ofo 是如何影响今日头条发展的”
近段时间, ofo 小黄车押金难退的消息频频曝出.尽管 OFO 已经宣布押金只能在线上退还,但是线上退押金也难,因此很多的用户还是选择到 ofo 北京总部“要个说法”.记者昨天在现场发现,位于北京中关 ...
- WPF开发汽车采样机上位机软件
由于项目需要,需开发同一套汽车.火车.皮带采样机的上位机软件. 看过之前的上位机软件,老版本都是DelPhi.VB开发,稍微新语言开发的是采用winform开发.要不就是使用组态软件. Delphi语 ...
- PyCharm Tips 常用操作帮助
以下内容转自 http://www.2cto.com/os/201410/341542.html --------------------------------------------------- ...
- 回顾:前端模块化和AMD、CMD规范(全)
先列举下一些著名言论: "我想定义一个 each 方法遍历对象,但页头的 util.js 里已经定义了一个,我的只能叫 eachObject 了,好无奈." "Requi ...
- C. Multiplicity
链接 [http://codeforces.com/contest/1061/problem/C] 题意 给你一个数组,让你找有多少个子串(并非连续,但相对位置不能换),满足bi%i==0; 分析 d ...
- 第三次作业 (一)----------------------Visual Studio 2015的安装及单元测试
这是第三周的第一个作业,Visual Studio 2015的安装及单元测试. 我的电脑之前安装过Visual Studio 2015,但是在安装过程中我从来没有留意过各种注意事项,所集正好借此作业的 ...
- Beta版测试报告
Beta版测试报告 测试中发现的Bug: Version 2.0 Bug List 1. 在动态监测界面,若随便点击“开始”.“关闭”.“结束”.红叉,会出现不定式崩溃现象. 2. 处理空数据时可能会 ...
- 作业1+2.四则运算(改进后完整版,用python写的)_064121陶源
概述: 用一个星期加上五一的三天假期自学了python,在Mac系统上重新写出了四则运算的程序,编译器是PyCharm,相当于完成了作业2.d)"选一个你从来没有学过的编程语言,试一试实现基 ...