MT【233】染色正方形
有$n$个正方形排成一行,今用红,白,黑三种颜色给这$n$个正方形染色,每个正方形只能染一种颜色.如果要求染白色的正方形必须是偶数个,问有多少种不同的染色方法.

解答:设有$a_n$种不同的染法,则$\{a_n\}$对应的指数型母函数为
$f(x)=\left(1+x+\dfrac{x^2}{2!}+\cdots+\dfrac{x^n}{n!}+\cdots\right)*\left(1+x+\dfrac{x^2}{2!}+\cdots+\dfrac{x^n}{n!}+\cdots\right)$
$*\left(1+\dfrac{x^2}{2!}+\dfrac{x^4}{4!}+\cdots+\dfrac{x^{2n}}{2n!}+\cdots\right)$
得$f(x)=e^x*e^x\dfrac{1}{2}(e^x+e^{-x})=\dfrac{1}{2}(e^{3x}+e^x)=\sum\limits_{n=0}^{+\infty}{\dfrac{1}{2}(3^n+1)\dfrac{x^n}{n!}}$
故$a_n=\dfrac{1}{2}(3^n+1)$
当然我们也可以直接写出递推式:$a_n=2a_{n-1}+(3^{n-1}-a_{n-1}),a_1=2$
MT【233】染色正方形的更多相关文章
- MT【234】正方形染色(二)
有$n$个正方形排成一行,今用红,白,黑三种颜色给这$n$个正方形染色,每个正方形只能染一种颜色.如果要求染这三种颜色的正方形都是偶数个,问有多少种不同的染色方法. 解答: 设有$a_n$种不同的染法 ...
- MT【241】红蓝两色染色
用红蓝两色给$3*3$的格子染色,要求每行每列每种颜色都有,则不同的染色方法_____ 分析:按红色格子数分类,1)红色3或者6个有6种.2)红色4或者5个有45种.故一共有2*(6+45)=102种 ...
- bzoj千题计划233:bzoj 1304: [CQOI2009]叶子的染色
http://www.lydsy.com/JudgeOnline/problem.php?id=1304 结论1:根节点一定染色 如果根节点没有染色,选择其子节点的一个颜色,那么所有这个颜色的子节点都 ...
- BZOJ 1304: [CQOI2009]叶子的染色
1304: [CQOI2009]叶子的染色 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 566 Solved: 358[Submit][Statu ...
- 【BZOJ1414】[ZJOI2009]对称的正方形(哈希)
[BZOJ1414][ZJOI2009]对称的正方形(哈希) 题面 BZOJ 洛谷 题解 深思熟虑一波,发现一个矩阵如果左右对称的话,那么它每行都是一个回文串,同理,如果上下对称的话,那么每列都是一个 ...
- BZOJ4033:[HAOI2015]树上染色——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=4033 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将 ...
- 【BZOJ1414/3705】[ZJOI2009]对称的正方形 二分+hash
[BZOJ1414/3705][ZJOI2009]对称的正方形 Description Orez很喜欢搜集一些神秘的数据,并经常把它们排成一个矩阵进行研究.最近,Orez又得到了一些数据,并已经把它们 ...
- [LUOGU] P1387 最大正方形
题目描述 在一个n*m的只包含0和1的矩阵里找出一个不包含0的最大正方形,输出边长. 输入输出格式 输入格式: 输入文件第一行为两个整数n,m(1<=n,m<=100),接下来n行,每行m ...
- 【POJ - 2386】Lake Counting (dfs+染色)
-->Lake Counting 直接上中文了 Descriptions: 由于近日阴雨连天,约翰的农场中中积水汇聚成一个个不同的池塘,农场可以用 N x M (1 <= N <= ...
随机推荐
- python 对时间操作
from datetime import datetime,timedelta 'date_test':fields.function(_datetime_all,type='datetime', ...
- xml文件里 用js语句获取 当前时间
获取当前时间的代码:xml文件中 <td><div align="center"><br/><strong>送检时间</str ...
- 3.5《想成为黑客,不知道这些命令行可不行》(Learn Enough Command Line to Be Dangerous)—第三章小结
本章使用的重要命令总结在Table 5中 命令 描述 示例 curl 与URL交互 $ curl -O example.com which 指出程序的在计算机的路径 $ echo bar >&g ...
- CF1039D You Are Given a Tree 根号分治、二分、贪心
传送门 似乎直接做不太好做-- 当你不会做的时候就可以考虑根号算法了(或许是这样的 考虑如果只有一个询问如何计算答案. 显然是可以贪心的,思路与NOIP2018D1T3是相同的.每一个点向上传一条链, ...
- LInq之Take Skip TakeWhile SkipWhile Reverse Union Concat 用法
废话不多说,直接上代码,代码有注释!自行运行测试! class Program { static void Main(string[] args) { string[] names = { " ...
- CF [2016-2017 ACM-ICPC CHINA-Final][GYM 101194 H] Great Cells
很久以前做的一道思博题了,今天来补一补. 大致题意:在一个\(n*m\)的矩阵内填整数,数字在\([1,k]\)范围内.矩阵中某格的数为great number当且仅当与它同行同列的数字都严格比它小. ...
- cmake 添加头文件目录,链接动态、静态库(转载)
来源网址:http://www.cnblogs.com/binbinjx/p/5626916.html 罗列一下cmake常用的命令. CMake支持大写.小写.混合大小写的命令. 1. 添加头文件目 ...
- 学习ML.NET(1): 构建流水线
ML.NET使用LearningPipeline类定义执行期望的机器学习任务所需的步骤,让机器学习的流程变得直观. 下面用鸢尾花瓣预测快速入门的示例代码讲解流水线是如何工作的. using Micro ...
- Java开源博客My-Blog之mysql容器重复初始化的严重bug修复过程
写在前面的话 <Docker+SpringBoot+Mybatis+thymeleaf的Java博客系统开源啦> <Java开源博客My-Blog之docker容器组件化修改> ...
- 5分钟入门自动化测试——你应该学会的Postman用法(2)
前言 之前的一篇文章<你应该学会的Postman用法>,主要介绍了postman的一些高级的用法,便于日常开发和调试使用,本文的基础是对postman的基本使用以及一些高级用法有一定的了解 ...