有$n$个正方形排成一行,今用红,白,黑三种颜色给这$n$个正方形染色,每个正方形只能染一种颜色.如果要求染白色的正方形必须是偶数个,问有多少种不同的染色方法.

解答:设有$a_n$种不同的染法,则$\{a_n\}$对应的指数型母函数为
$f(x)=\left(1+x+\dfrac{x^2}{2!}+\cdots+\dfrac{x^n}{n!}+\cdots\right)*\left(1+x+\dfrac{x^2}{2!}+\cdots+\dfrac{x^n}{n!}+\cdots\right)$
$*\left(1+\dfrac{x^2}{2!}+\dfrac{x^4}{4!}+\cdots+\dfrac{x^{2n}}{2n!}+\cdots\right)$
得$f(x)=e^x*e^x\dfrac{1}{2}(e^x+e^{-x})=\dfrac{1}{2}(e^{3x}+e^x)=\sum\limits_{n=0}^{+\infty}{\dfrac{1}{2}(3^n+1)\dfrac{x^n}{n!}}$
故$a_n=\dfrac{1}{2}(3^n+1)$
当然我们也可以直接写出递推式:$a_n=2a_{n-1}+(3^{n-1}-a_{n-1}),a_1=2$

MT【233】染色正方形的更多相关文章

  1. MT【234】正方形染色(二)

    有$n$个正方形排成一行,今用红,白,黑三种颜色给这$n$个正方形染色,每个正方形只能染一种颜色.如果要求染这三种颜色的正方形都是偶数个,问有多少种不同的染色方法. 解答: 设有$a_n$种不同的染法 ...

  2. MT【241】红蓝两色染色

    用红蓝两色给$3*3$的格子染色,要求每行每列每种颜色都有,则不同的染色方法_____ 分析:按红色格子数分类,1)红色3或者6个有6种.2)红色4或者5个有45种.故一共有2*(6+45)=102种 ...

  3. bzoj千题计划233:bzoj 1304: [CQOI2009]叶子的染色

    http://www.lydsy.com/JudgeOnline/problem.php?id=1304 结论1:根节点一定染色 如果根节点没有染色,选择其子节点的一个颜色,那么所有这个颜色的子节点都 ...

  4. BZOJ 1304: [CQOI2009]叶子的染色

    1304: [CQOI2009]叶子的染色 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 566  Solved: 358[Submit][Statu ...

  5. 【BZOJ1414】[ZJOI2009]对称的正方形(哈希)

    [BZOJ1414][ZJOI2009]对称的正方形(哈希) 题面 BZOJ 洛谷 题解 深思熟虑一波,发现一个矩阵如果左右对称的话,那么它每行都是一个回文串,同理,如果上下对称的话,那么每列都是一个 ...

  6. BZOJ4033:[HAOI2015]树上染色——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=4033 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将 ...

  7. 【BZOJ1414/3705】[ZJOI2009]对称的正方形 二分+hash

    [BZOJ1414/3705][ZJOI2009]对称的正方形 Description Orez很喜欢搜集一些神秘的数据,并经常把它们排成一个矩阵进行研究.最近,Orez又得到了一些数据,并已经把它们 ...

  8. [LUOGU] P1387 最大正方形

    题目描述 在一个n*m的只包含0和1的矩阵里找出一个不包含0的最大正方形,输出边长. 输入输出格式 输入格式: 输入文件第一行为两个整数n,m(1<=n,m<=100),接下来n行,每行m ...

  9. 【POJ - 2386】Lake Counting (dfs+染色)

    -->Lake Counting 直接上中文了 Descriptions: 由于近日阴雨连天,约翰的农场中中积水汇聚成一个个不同的池塘,农场可以用 N x M (1 <= N <= ...

随机推荐

  1. VC++编写简单串口上位机程序

    VC++编写简单串口上位机程序   转载: http://blog.sina.com.cn/s/articlelist_1809084904_0_1.html VC++编写简单串口上位机程序 串口通信 ...

  2. sql语句 update

    UPDATE ban_group AS A SET  NAME ='锅炉三班' FROM     hr_employee AS b  WHERE     b.job_no = '1394' AND A ...

  3. 【Qt】窗口居中显示

    w.move((a.desktop()->width() - w.width())/, (a.desktop()->height() - w.height())/); 上述方法可以置中,但 ...

  4. 针对django2.2报错:UnicodeDecodeError: 'gbk' codec can't decode byte 0xa6 in position 9737: ill....

    1.报错: File "D:\Python\Python37-32\lib\site-packages\django\views\debug.py", line 332, in g ...

  5. Spark在Windows下的环境搭建(转)

    原作者:xuweimdm   原文网址:http://blog.csdn.net/u011513853/article/details/52865076 由于Spark是用Scala来写的,所以Spa ...

  6. Ubuntu轻松编译openJDK

    花了三天在windows上搞openJDK,对bash本来就不熟,加上各种莫名依赖和脚本里的bug,身心俱疲.最后make all的时候产生一个莫名其妙的错误说什么有warning且-Werror置为 ...

  7. Qt Creator 中,如何更改h,cpp,ui的文件并不让ui失效

    这个星期在使用qt,碰到一个很蛋疼的问题:创建对话框的时候,不小心输错了名字.而且是在很迟才发现的.这个时候对话框都已经布局差不多了,为了改名字,碰到更蛋疼的问题,改了名字后就无法使用转到槽的功能了. ...

  8. 浅谈java反射机制

    目录 什么是反射 初探 初始化 类 构造函数 属性 方法 总结 思考 什么是反射 JAVA反射机制是在运行状态中,对于任意一个类,都能够知道这个类的所有属性和方法:对于任意一个对象,都能够调用它的任意 ...

  9. linux下文件加密方法总结

    为了安全考虑,通常会对一些重要文件进行加密备份或加密保存,下面对linux下的文件加密方法做一简单总结: 方法一:gzexe加密这种加密方式不是非常保险的方法,但是能够满足一般的加密用途,可以隐蔽脚本 ...

  10. openpyxl 实现excel字母列号与数字列号之间的转换

    https://www.cnblogs.com/apple2016/p/9686433.html