MT【233】染色正方形
有$n$个正方形排成一行,今用红,白,黑三种颜色给这$n$个正方形染色,每个正方形只能染一种颜色.如果要求染白色的正方形必须是偶数个,问有多少种不同的染色方法.

解答:设有$a_n$种不同的染法,则$\{a_n\}$对应的指数型母函数为
$f(x)=\left(1+x+\dfrac{x^2}{2!}+\cdots+\dfrac{x^n}{n!}+\cdots\right)*\left(1+x+\dfrac{x^2}{2!}+\cdots+\dfrac{x^n}{n!}+\cdots\right)$
$*\left(1+\dfrac{x^2}{2!}+\dfrac{x^4}{4!}+\cdots+\dfrac{x^{2n}}{2n!}+\cdots\right)$
得$f(x)=e^x*e^x\dfrac{1}{2}(e^x+e^{-x})=\dfrac{1}{2}(e^{3x}+e^x)=\sum\limits_{n=0}^{+\infty}{\dfrac{1}{2}(3^n+1)\dfrac{x^n}{n!}}$
故$a_n=\dfrac{1}{2}(3^n+1)$
当然我们也可以直接写出递推式:$a_n=2a_{n-1}+(3^{n-1}-a_{n-1}),a_1=2$
MT【233】染色正方形的更多相关文章
- MT【234】正方形染色(二)
有$n$个正方形排成一行,今用红,白,黑三种颜色给这$n$个正方形染色,每个正方形只能染一种颜色.如果要求染这三种颜色的正方形都是偶数个,问有多少种不同的染色方法. 解答: 设有$a_n$种不同的染法 ...
- MT【241】红蓝两色染色
用红蓝两色给$3*3$的格子染色,要求每行每列每种颜色都有,则不同的染色方法_____ 分析:按红色格子数分类,1)红色3或者6个有6种.2)红色4或者5个有45种.故一共有2*(6+45)=102种 ...
- bzoj千题计划233:bzoj 1304: [CQOI2009]叶子的染色
http://www.lydsy.com/JudgeOnline/problem.php?id=1304 结论1:根节点一定染色 如果根节点没有染色,选择其子节点的一个颜色,那么所有这个颜色的子节点都 ...
- BZOJ 1304: [CQOI2009]叶子的染色
1304: [CQOI2009]叶子的染色 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 566 Solved: 358[Submit][Statu ...
- 【BZOJ1414】[ZJOI2009]对称的正方形(哈希)
[BZOJ1414][ZJOI2009]对称的正方形(哈希) 题面 BZOJ 洛谷 题解 深思熟虑一波,发现一个矩阵如果左右对称的话,那么它每行都是一个回文串,同理,如果上下对称的话,那么每列都是一个 ...
- BZOJ4033:[HAOI2015]树上染色——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=4033 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将 ...
- 【BZOJ1414/3705】[ZJOI2009]对称的正方形 二分+hash
[BZOJ1414/3705][ZJOI2009]对称的正方形 Description Orez很喜欢搜集一些神秘的数据,并经常把它们排成一个矩阵进行研究.最近,Orez又得到了一些数据,并已经把它们 ...
- [LUOGU] P1387 最大正方形
题目描述 在一个n*m的只包含0和1的矩阵里找出一个不包含0的最大正方形,输出边长. 输入输出格式 输入格式: 输入文件第一行为两个整数n,m(1<=n,m<=100),接下来n行,每行m ...
- 【POJ - 2386】Lake Counting (dfs+染色)
-->Lake Counting 直接上中文了 Descriptions: 由于近日阴雨连天,约翰的农场中中积水汇聚成一个个不同的池塘,农场可以用 N x M (1 <= N <= ...
随机推荐
- 4.3《想成为黑客,不知道这些命令行可不行》(Learn Enough Command Line to Be Dangerous)—链接到目录
在4.2章中我们已经会用cd进入到指定的目录中.这是导航最常见的用途之一,但是它还有几个值得关注的用途.第一个是使用cd ..(读作'see-dee 点点')返回当前目录级别的上一级: $ pwd / ...
- BZOJ3714 PA2014 Kuglarz 最小生成树
题目传送门 题意:有$N$个盒子,每个盒子中有$0$或$1$个球.现在你可以花费$c_{i,j}$的代价获得$i$到$j$的盒子中球的总数的奇偶性,求最少需要多少代价才能知道哪些盒子中有球.$N \l ...
- angularjs的$window功能小练习
我们想在一个文本框输入一些文字,然后点击铵钮,alert()出来. <div ng-app="alertApp" ng-controller="alertContr ...
- c# 设置桌面背景窗口 SetParent
using System; using System.Drawing; using System.Runtime.InteropServices; using System.Windows.Forms ...
- sql储存过程in(多个参数)
一.用sql函数 首先要创建一个截取字符串的函数,新建一个查询,把下面代码复制进去执行. 函数SqlitIn的第一个参数是储存过程要in的字符串,第二个参数是分隔符 CREATE function S ...
- 基于uFUN开发板的RGB调色板
前言 使用uFUN开发板配合Qt上位机,实现任意颜色的混合,Qt上位机下发RGB数值,范围0-255,uFUN开发板进行解析,然后输出不同占空比的PWM,从而实现通过RGB三原色调制出任意颜色. Qt ...
- Android恶意样本数据集汇总
硕士论文的研究方向为Android恶意应用分类,因此花了一点时间去搜集Android恶意样本.其中一部分来自过去论文的公开数据集,一部分来自社区或平台的样本.现做一个汇总,标明了样本或数据集的采集时间 ...
- iphone忘记锁屏密码却记得appleID密码的不保存数据的刷机办法
请注意看清题目再看本文,另外一切后果博主不负任何责任.操作实现环境:原装数据线,拔掉sim卡昨天,iPhone6sp忘记密码被锁定,尝试通过找回手机抹除手机功能后,提示需要手机接入互联网才能实现,而我 ...
- MySQL针对Swap分区的运维注意点
Linux有很多很好的内存.IO调度机制,但是并不会适用于所有场景.对于运维人员来说,Linux比较让人头疼的一个地方是:它不会因为MySQL很重要就避免将分配给MySQL的地址空间映射到swap上. ...
- linux上启动tomcat远程不能访问
linux上关闭防火墙同样访问不了,执行iptables -f即可. 你试一试这个“iptables -F”然后再访问,如果能够访问了,那么需要执行“firewall-cmd --add-port=8 ...