一、公式使用参考

1.如何插入公式

  • 行中公式(放在文中与其它文字混编)可以用如下方法表示:$ 数学公式 $
  • 独立公式可以用如下方法表示:$$ 数学公式 $$
  • 自动编号的公式可以用如下方法表示:

若需要手动编号,参见大括号和行标的使用

\begin{equation}
数学公式
\label{eq:当前公式名}
\end{equation}
自动编号后的公式可在全文任意处使用 \eqref{eq:公式名} 语句引用。

例子:

$ J_\alpha(x) = \sum_{m=0}^\infty \frac{(-1)^m}{m! \Gamma (m + \alpha + 1)} {\left({ \frac{x}{2} }\right)}^{2m + \alpha} \text {,行内公式示例} $
显示:

$ J_\alpha(x) = \sum_{m=0}^\infty \frac{(-1)^m}{m! \Gamma (m + \alpha + 1)} {\left({ \frac{x}{2} }\right)}^{2m + \alpha} \text {,行内公式示例} $

例子:

$$ J_\alpha(x) = \sum_{m=0}^\infty \frac{(-1)^m}{m! \Gamma (m + \alpha + 1)} {\left({ \frac{x}{2} }\right)}^{2m + \alpha} \text {,独立公式示例} $$

显示:

\[J_\alpha(x) = \sum_{m=0}^\infty \frac{(-1)^m}{m! \Gamma (m + \alpha + 1)} {\left({ \frac{x}{2} }\right)}^{2m + \alpha} \text {,独立公式示例}
\]

2.如何输入上下标

^ 表示上标, _ 表示下标。如果上下标的内容多于一个字符,需要用 {}将这些内容括成一个整体。上下标可以嵌套,也可以同时使用。

例子:

$$ x^{y^z}=(1+{\rm e}^x)^{-2xy^w} $$

显示:

\[x^{y^z}=(1+{\rm e}^x)^{-2xy^w}
\]

另外,如果要在左右两边都有上下标,可以用 \sideset 命令

  • 例子:

    $$ \sideset{^1_2}{^3_4}\bigotimes $$
  • 显示:

\[\sideset{^1_2}{^3_4}\bigotimes
\]

3.如何输入括号和分隔符

()[] |表示符号本身,使用 \{\} 来表示 {} 。当要显示大号的括号或分隔符时,要用 \left\right 命令。

一些特殊的括号:

输入 显示
$$\langle表达式\rangle$$ $$\langle表达式 \rangle$$
$$\lceil表达式\rceil$$ $$\lceil表达式 \rceil$$
$$\lfloor表达式\rfloor$$ $$\lfloor表达式 \rfloor$$
$$\lbrace表达式\rbrace$$ $$\lbrace表达式 \rbrace$$

例子:

$$ f(x,y,z) = 3y^2z \left( 3+\frac{7x+5}{1+y^2} \right) $$

显示:

\[f(x,y,z) = 3y^2z \left( 3+\frac{7x+5}{1+y^2} \right)
\]

4.如何输入分数

通常使用 \frac {分子} {分母} 命令产生一个分数\frac {分子} {分母},分数可嵌套。

便捷情况可直接输入 \frac ab 来快速生成一个\frac ab。

如果分式很复杂,亦可使用 分子 \over 分母 命令,此时分数仅有一层。

例子:

$$\frac{a-1}{b-1} \quad and \quad {a+1\over b+1}$$

\[\frac{a-1}{b-1} \quad and \quad {a+1\over b+1}
\]

5.如何输入开方

使用 \sqrt [根指数,省略时为2] {被开方数} 命令输入开方。

例子:

$$\sqrt{2} \quad and \quad \sqrt[n]{3}$$

\[\sqrt{2} \quad and \quad \sqrt[n]{3}
\]

6.如何输入省略号

数学公式中常见的省略号有两种,\ldots 表示与文本底线对齐的省略号,\cdots 表示与文本中线对齐的省略号。

例子:

$$f(x_1,x_2,\underbrace{\ldots}_{\rm ldots} ,x_n) = x_1^2 + x_2^2 + \underbrace{\cdots}_{\rm cdots} + x_n^2$$

显示:

\[f(x_1,x_2,\underbrace{\ldots}_{\rm ldots} ,x_n) = x_1^2 + x_2^2 + \underbrace{\cdots}_{\rm cdots} + x_n^2
\]

7.如何输入矢量

使用 \vec{矢量} 来自动产生一个矢量。也可以使用 \overrightarrow 等命令自定义字母上方的符号。

例子:

$$\vec{a} \cdot \vec{b}=0$$

显示:

\[\vec{a} \cdot \vec{b}=0
\]

例子:

$$\overleftarrow{xy} \quad and \quad \overleftrightarrow{xy} \quad and \quad \overrightarrow{xy}$$

显示:

\[\overleftarrow{xy} \quad and \quad \overleftrightarrow{xy} \quad and \quad \overrightarrow{xy}
\]

8.如何输入积分

使用 \int_积分下限^积分上限 {被积表达式} 来输入一个积分。

例子:

$$\int_0^1 {x^2} \,{\rm d}x$$

显示:

\[\int_0^1 {x^2} \,{\rm d}x
\]

9.如何输入极限运算

使用 \lim_{变量 \to 表达式} 表达式 来输入一个极限。如有需求,可以更改 \to 符号至任意符号。

例子:

$$ \lim_{n \to +\infty} \frac{1}{n(n+1)} \quad and \quad \lim_{x\leftarrow{示例}} \frac{1}{n(n+1)} $$

显示:

\[\lim_{n \to +\infty} \frac{1}{n(n+1)} \quad and \quad \lim_{x\leftarrow{示例}} \frac{1}{n(n+1)}
\]

10.如何输入累加、累乘运算

使用 \sum_{下标表达式}^{上标表达式} {累加表达式} 来输入一个累加。

与之类似,使用 \prod \bigcup \bigcap 来分别输入累乘、并集和交集。

此类符号在行内显示时上下标表达式将会移至右上角和右下角。

例子:

$$\sum_{i=1}^n \frac{1}{i^2} \quad and \quad \prod_{i=1}^n \frac{1}{i^2} \quad and \quad \bigcup_{i=1}^{2} R$$

显示:

\[\sum_{i=1}^n \frac{1}{i^2} \quad and \quad \prod_{i=1}^n \frac{1}{i^2} \quad and \quad \bigcup_{i=1}^{2} R
\]

11.如何输入希腊字母

输入 \小写希腊字母英文全称 \首字母大写希腊字母英文全称来分别输入小写和大写希腊字母。

对于大写希腊字母与现有字母相同的,直接输入大写字母即可。

输入 显示 输入 显示
$\alpha$ \(\alpha\) $A$ \(A\)
$\beta$ \(\beta\) $B$ \(B\)
$\gamma$ \(\gamma\) $\Gamma$ \(\Gamma\)
$\delta$ \(\delta\) $\Delta$ \(\Delta\)
$\epsilon$ \(\epsilon\) $E$ \(E\)
$\zeta$ \(\zeta\) $Z$ \(Z\)
$\eta$ \(\eta\) $H$ \(H\)
$\theta$ \(\theta\) $\Theta$ \(\Theta\)
$\iota$ \(\iota\) $I$ \(I\)
$\kappa$ \(\kappa\) $K$ \(K\)
$\lambda$ \(\lambda\) $\Lambda$ \(\Lambda\)
$\nu$ \(\nu\) $N$ \(N\)
$\mu$ \(\mu\) $M$ \(M\)
$\xi$ \(\xi\) $\Xi$ \(\Xi\)
$o$ \(o\) $O$ \(O\)
$\pi$ \(\pi\) $\Pi$ \(\Pi\)
$\rho$ \(\rho\) $P$ \(P\)
$\sigma$ \(\sigma\) $\Sigma$ \(\Sigma\)
$\tau$ \(\tau\) $T$ \(T\)
$\upsilon$ \(\upsilon\) $\Upsilon$ \(\Upsilon\)
$\phi$ \(\phi\) $\Phi$ \(\Phi\)
$\chi$ \(\chi\) $X$ \(X\)
$\psi$ \(\psi\) $\Psi$ \(\Psi\)
$\omega$ \(\omega\) $\Omega$ \(\Omega\)

12.大括号和行标的使用

使用 \left \right 来创建自动匹配高度的 (圆括号),[方括号] 和 {花括号} 。

在每个公式末尾前使用\tag{行标}来实现行标。

例子:

$$
f\left(
\left[
\frac{
1+\left\{x,y\right\}
}{
\left(
\frac{x}{y}+\frac{y}{x}
\right)
\left(u+1\right)
}+a
\right]^{3/2}
\right)
\tag{行标}
$$

显示:

\[f\left(
\left[
\frac{
1+\left\{x,y\right\}
}{
\left(
\frac{x}{y}+\frac{y}{x}
\right)
\left(u+1\right)
}+a
\right]^{3/2}
\right)
\tag{行标}
\]

小技巧:

  • $\smash{\displaystyle\max_{0 \leq q \leq n-1}} f(q) \le n$ 显示:

    \(\smash{\displaystyle\max_{0 \leq q \leq n-1}} f(q) \le n\)
  • $f(x + \epsilon) \approx f(x) + f'(x) \epsilon + \mathcal{O}(\epsilon^2).$, 显示:

    \(f(x + \epsilon) \approx f(x) + f'(x) \epsilon + \mathcal{O}(\epsilon^2).\)
  • 求导符号使用 $\text{d}x$, 即:\(\text{d}x\)

Markdown公式(二)以表格的形式列出了常用符号。

更多内容参见https://www.zybuluo.com/codeep/note/163962

字体转换

若要对公式的某一部分字符进行字体转换,可以用 {\字体 {需转换的部分字符}} 命令,其中 \字体 部分可以参照下表选择合适的字体。一般情况下,公式默认为意大利体.

输入 说明 显示实例
\rm 罗马体 \({\rm D}\)
\cal 花体 \(\cal D\)
\it 意大利体 \(\it D\)
\Bbb 黑板粗体 \(\Bbb D\)
\bf 粗体 \(\bf D\)
\mit 数学斜体 \(\mit D\)
\sf 等线体 \(\sf D\)
\scr 手写体 \(\scr D\)
\tt 打字机体 \(\tt D\)
\frak 旧德式字体 \(\frak D\)
\boldsymbol 黑体 \(\boldsymbol{X}\), \(\boldsymbol{x}\)

设定表格

$$
\begin{array}{ccc|c}
a11 & a12 & a13 & b1 \\
a21 & a22 & a23 & b2 \\
a31 & a32 & a33 & b3 \\
\end{array}
$$

显示:

\[\begin{array}{ccc|c}
a11 & a12 & a13 & b1 \\
a21 & a22 & a23 & b2 \\
a31 & a32 & a33 & b3 \\
\end{array}
\]

还可以表示 $\KaTeX$$\LaTeX$ 为 :

\(\KaTeX\) \(\LaTeX\)。

Markdown公式编辑学习笔记的更多相关文章

  1. 关于Markdown的一些学习笔记

    **关于Markdown的一些学习笔记** 一直利用markdown进行博客的文档编写,一方面是因为不需要特别注重排版,另一方面是十分的方便.最近突发奇想的认为,如果能运用到平时的作业或课程中,会不会 ...

  2. Markdown公式编辑

    一.公式使用参考 1.如何插入公式 行中公式(放在文中与其它文字混编)可以用如下方法表示:$ 数学公式 $ 独立公式可以用如下方法表示:$$ 数学公式 $$ 自动编号的公式可以用如下方法表示: 若需要 ...

  3. markdown公式编辑参考

    原文作者,https://www.cnblogs.com/q735613050/p/7253073.html

  4. MarkDown语法 学习笔记 效果源码对照

    MarkDown基本语法学习笔记 Markdown是一种可以使用普通文本编辑器编写的标记语言,通过简单的标记语法,它可以使普通文本内容具有一定的格式. 下面将对Markdown的基本使用做一个介绍 目 ...

  5. VSTO学习笔记(五)批量编辑Excel 2010 x64

    原文:VSTO学习笔记(五)批量编辑Excel 2010 x64 近期因为工作的需要,经常要批量处理大量的Excel文件,如果纯手工一个个修改,非常的麻烦,于是写了这么一个帮助类,希望能对你有所帮助. ...

  6. 【Ext.Net学习笔记】06:Ext.Net GridPanel的用法(GridPanel 折叠/展开行、GridPanel Selection、 可编辑的GridPanel)

    GridPanel 折叠/展开行 Ext.Net GridPanel的行支持折叠/展开功能,这个功能个人觉得还说很有用处的,尤其是数据中包含图片等内容的时候. 下面来看看效果: 使用行折叠/展开功能之 ...

  7. Ext.Net学习笔记18:Ext.Net 可编辑的GridPanel

    Ext.Net学习笔记18:Ext.Net 可编辑的GridPanel Ext.Net GridPanel 有两种编辑模式:编辑单元格和编辑行. 单元格编辑: 行编辑: 可以看出,单元格编辑的时候,只 ...

  8. Markdown 学习笔记: Basics

    Markdown 学习笔记: Basics 原文:Basics. 了解Markdown格式化句法的要点 本页对如何使用Markdown提供了一个简单的概述.在"句法"页中对Mark ...

  9. VSTO 学习笔记(十二)自定义公式与Ribbon

    原文:VSTO 学习笔记(十二)自定义公式与Ribbon 这几天工作中在开发一个Excel插件,包含自定义公式,根据条件从数据库中查询结果.这次我们来做一个简单的测试,达到类似的目的. 即在Excel ...

随机推荐

  1. ASP.NET Core MVC中URL和数据模型的匹配

    Http GET方法 首先我们来看看GET方法的Http请求,URL参数和ASP.NET Core MVC中Controller的Action方法参数匹配情况. 我定义一个UserController ...

  2. Java 中 LinkedList 和 ArrayList 的区别

    引自:https://www.cnblogs.com/huzi007/p/5550440.html ArrayList和LinkedList的大致区别如下:1.ArrayList是实现了基于动态数组的 ...

  3. WebApi 接口返回值不困惑:返回值类型详解。IHttpActionResult、void、HttpResponseMessage、自定义类型

    首先声明,我还没有这么强大的功底,只是感觉博主写的很好,就做了一个复制,请别因为这个鄙视我,博主网址:http://www.cnblogs.com/landeanfen/p/5501487.html ...

  4. electron 开发实时加载

    第一个方式 cnpm install electron-reload --save-dev cnpm install electron-prebuilt --save-dev require('ele ...

  5. OLED小记

    1.点阵组成OLED,OLED中有一个GRAM区域,区域中的值直接刷新到屏幕上,对应关系是1bit对应一个像素点: 2.要点亮一个像素点,只需要将GRAM中的对应bit位写1即可.GRAM中是分页来管 ...

  6. Verilog设计Valid-Ready握手协议

    转自http://ninghechuan.com 我不生产知识,我只是知识的搬运工. Handshake Protocol握手协议!为了保证数据传输过程中准确无误,我们需要加上握手信号来控制信号的传输 ...

  7. html5录音支持pc和Android、ios部分浏览器,微信也是支持的,JavaScript getUserMedia

    以前在前人基础上重复造了一个网页录音的轮子,顺带把github仓库使用研究了一下,扔到了github上. 优势在于结构简单,可插拔式的录音格式支持,几乎可以支持任意格式(前提有相应的编码器):默认提供 ...

  8. Educational Codeforces Round 49 (Rated for Div. 2)A到C题

    A题意 给你t表示有t组测试数据,每组数据给你一个含小写字母的字符串,每个字符必须变为它相邻的字符,问最后是否能变成回文串.a不能变成z,反过来也不行 分析 只需对对称位置判断差是否小于2且不等于1, ...

  9. python实现线性规划

    python工具包scipy linprog 函数格式 scipy.optimize.linprog(c, A_ub=None, b_ub=None, A_eq=None, b_eq=None, bo ...

  10. beta版说明书

    项目名称:GoGoing 软件使用说明: 在主界面是可以点击选择景点门票区间来选择景点,同时也可搜索景点显示信息. 还可以通过定位功能显示附近景点. 点开门票区间后是一些景点的图片和简介,还可以通过距 ...