手写数字识别任务 用于对 0 ~ 9 的十类数字进行分类,即输入手写数字的图片,可识别出这个图片中的数字。

使用 pip 工具安装 matplotlib 和 numpy

python -m pip install matplotlib numpy -i https://mirror.baidu.com/pypi/simple

D:\OpenSource\PaddlePaddle>python -m pip install matplotlib numpy -i https://mirror.baidu.com/pypi/simple
Looking in indexes: https://mirror.baidu.com/pypi/simple
Collecting matplotlib
Downloading https://mirror.baidu.com/pypi/packages/92/01/2c04d328db6955d77f8f60c17068dde8aa66f153b2c599ca03c2cb0d5567/matplotlib-3.7.1-cp38-cp38-win_amd64.whl (7.6 MB)
|████████████████████████████████| 7.6 MB ...
Requirement already satisfied: numpy in d:\program files\python38\lib\site-packages (1.24.3)
Collecting packaging>=20.0
Downloading https://mirror.baidu.com/pypi/packages/ab/c3/57f0601a2d4fe15de7a553c00adbc901425661bf048f2a22dfc500caf121/packaging-23.1-py3-none-any.whl (48 kB)
|████████████████████████████████| 48 kB 1.2 MB/s
Collecting cycler>=0.10
Downloading https://mirror.baidu.com/pypi/packages/5c/f9/695d6bedebd747e5eb0fe8fad57b72fdf25411273a39791cde838d5a8f51/cycler-0.11.0-py3-none-any.whl (6.4 kB)
Requirement already satisfied: pillow>=6.2.0 in d:\program files\python38\lib\site-packages (from matplotlib) (9.5.0)
Collecting python-dateutil>=2.7
Downloading https://mirror.baidu.com/pypi/packages/36/7a/87837f39d0296e723bb9b62bbb257d0355c7f6128853c78955f57342a56d/python_dateutil-2.8.2-py2.py3-none-any.whl (247 kB)
|████████████████████████████████| 247 kB ...
Collecting importlib-resources>=3.2.0
Downloading https://mirror.baidu.com/pypi/packages/38/71/c13ea695a4393639830bf96baea956538ba7a9d06fcce7cef10bfff20f72/importlib_resources-5.12.0-py3-none-any.whl (36 kB)
Collecting fonttools>=4.22.0
Downloading https://mirror.baidu.com/pypi/packages/16/07/1c7547e27f559ec078801d522cc4d5127cdd4ef8e831c8ddcd9584668a07/fonttools-4.39.3-py3-none-any.whl (1.0 MB)
|████████████████████████████████| 1.0 MB ...
Collecting pyparsing>=2.3.1
Downloading https://mirror.baidu.com/pypi/packages/6c/10/a7d0fa5baea8fe7b50f448ab742f26f52b80bfca85ac2be9d35cdd9a3246/pyparsing-3.0.9-py3-none-any.whl (98 kB)
|████████████████████████████████| 98 kB 862 kB/s
Collecting contourpy>=1.0.1
Downloading https://mirror.baidu.com/pypi/packages/08/ce/9bfe9f028cb5a8ee97898da52f4905e0e2d9ca8203ffdcdbe80e1769b549/contourpy-1.0.7-cp38-cp38-win_amd64.whl (162 kB)
|████████████████████████████████| 162 kB ...
Collecting kiwisolver>=1.0.1
Downloading https://mirror.baidu.com/pypi/packages/4f/05/59b34e788bf2b45c7157c3d898d567d28bc42986c1b6772fb1af329eea0d/kiwisolver-1.4.4-cp38-cp38-win_amd64.whl (55 kB)
|████████████████████████████████| 55 kB 784 kB/s
Collecting zipp>=3.1.0
Downloading https://mirror.baidu.com/pypi/packages/5b/fa/c9e82bbe1af6266adf08afb563905eb87cab83fde00a0a08963510621047/zipp-3.15.0-py3-none-any.whl (6.8 kB)
Requirement already satisfied: six>=1.5 in d:\program files\python38\lib\site-packages (from python-dateutil>=2.7->matplotlib) (1.16.0)
Installing collected packages: zipp, python-dateutil, pyparsing, packaging, kiwisolver, importlib-resources, fonttools, cycler, contourpy, matplotlib
Successfully installed contourpy-1.0.7 cycler-0.11.0 fonttools-4.39.3 importlib-resources-5.12.0 kiwisolver-1.4.4 matplotlib-3.7.1 packaging-23.1 pyparsing-3.0.9 python-dateutil-2.8.2 zipp-3.15.0
WARNING: You are using pip version 21.1.1; however, version 23.1.2 is available.
You should consider upgrading via the 'D:\Program Files\Python38\python.exe -m pip install --upgrade pip' command. D:\OpenSource\PaddlePaddle>

创建 DigitalRecognition.py

官网代码少了 plt.show() # 要加上这句,才会显示图片

import paddle
import numpy as np
from paddle.vision.transforms import Normalize transform = Normalize(mean=[127.5], std=[127.5], data_format='CHW')
# 下载数据集并初始化 DataSet
'''
飞桨在 paddle.vision.datasets 下内置了计算机视觉(Computer Vision,CV)领域常见的数据集,
如 MNIST、Cifar10、Cifar100、FashionMNIST 和 VOC2012 等。在本任务中,
先后加载了 MNIST 训练集(mode='train')和测试集(mode='test'),训练集用于训练模型,测试集用于评估模型效果。
'''
train_dataset = paddle.vision.datasets.MNIST(mode='train', transform=transform)
test_dataset = paddle.vision.datasets.MNIST(mode='test', transform=transform)
# 打印数据集里图片数量 60000 images in train_dataset, 10000 images in test_dataset
# print('{} images in train_dataset, {} images in test_dataset'.format(len(train_dataset), len(test_dataset))) # 模型组网并初始化网络
lenet = paddle.vision.models.LeNet(num_classes=10)
model = paddle.Model(lenet) # 模型训练的配置准备,准备损失函数,优化器和评价指标
model.prepare(paddle.optimizer.Adam(parameters=model.parameters()),
paddle.nn.CrossEntropyLoss(),
paddle.metric.Accuracy()) # 模型训练
model.fit(train_dataset, epochs=5, batch_size=64, verbose=1)
# 模型评估
model.evaluate(test_dataset, batch_size=64, verbose=1) # 保存模型
model.save('./output/mnist')
# 加载模型
model.load('output/mnist') # 从测试集中取出一张图片
img, label = test_dataset[0]
# 将图片shape从1*28*28变为1*1*28*28,增加一个batch维度,以匹配模型输入格式要求
img_batch = np.expand_dims(img.astype('float32'), axis=0) # 执行推理并打印结果,此处predict_batch返回的是一个list,取出其中数据获得预测结果
out = model.predict_batch(img_batch)[0]
pred_label = out.argmax()
print('true label: {}, pred label: {}'.format(label[0], pred_label))
# 可视化图片
from matplotlib import pyplot as plt
plt.imshow(img[0])
plt.show() # 要加上这句,才会显示图片

PyCharm运行(推荐,有错误能显示出来)

Python MatplotlibDeprecationWarning Matplotlib 3.6 and will be removed two minor releases later

File -> Settings -> Tools -> Python Scientific -> 取消 Show plots in tool window,

取消后,将不会看到红字警告提示

CMD 运行

D:\OpenSource\PaddlePaddle>python DigitalRecognition.py



如果碰到下列错误,需要加上 plt.show()

Python MatplotlibDeprecationWarning Matplotlib 3.6 and will be removed two minor releases later

MatplotlibDeprecationWarning: Support for FigureCanvases without a required_interactive_framework attribute was deprecated in Matplotlib 3.6 and will be removed two minor releases later.
plt.imshow(img[0])

数据集定义与加载

飞桨在 paddle.vision.datasets 下内置了计算机视觉(Computer Vision,CV)领域常见的数据集,如 MNIST、Cifar10、Cifar100、FashionMNIST 和 VOC2012 等。在本任务中,先后加载了 MNIST 训练集(mode='train')和测试集(mode='test'),训练集用于训练模型,测试集用于评估模型效果。

飞桨除了内置了 CV 领域常见的数据集,还在 paddle.text 下内置了自然语言处理(Natural Language Processing,NLP)领域常见的数据集,并提供了自定义数据集与加载功能的 paddle.io.Dataset 和 paddle.io.DataLoader API,详细使用方法可参考『数据集定义与加载』 章节。

另外在 paddle.vision.transforms 下提供了一些常用的图像变换操作,如对图像的翻转、裁剪、调整亮度等处理,可实现数据增强,以增加训练样本的多样性,提升模型的泛化能力。本任务在初始化 MNIST 数据集时通过 transform 字段传入了 Normalize 变换对图像进行归一化,对图像进行归一化可以加快模型训练的收敛速度。该功能的具体使用方法可参考『数据预处理』 章节。

模型组网

https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/beginner/quick_start_cn.html#moxingzuwang

模型训练与评估

https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/beginner/quick_start_cn.html#moxingxunlianyupinggu

模型推理

https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/beginner/quick_start_cn.html#moxingtuili

百度飞桨(PaddlePaddle)-数字识别的更多相关文章

  1. 提速1000倍,预测延迟少于1ms,百度飞桨发布基于ERNIE的语义理解开发套件

    提速1000倍,预测延迟少于1ms,百度飞桨发布基于ERNIE的语义理解开发套件 11月5日,在『WAVE Summit+』2019 深度学习开发者秋季峰会上,百度对外发布基于 ERNIE 的语义理解 ...

  2. 树莓派4B安装 百度飞桨paddlelite 做视频检测 (一、环境安装)

    前言: 当前准备重新在树莓派4B8G 上面搭载训练模型进行识别检测,训练采用了百度飞桨的PaddleX再也不用为训练部署环境各种报错发愁了,推荐大家使用. 关于在树莓派4B上面paddlelite的文 ...

  3. 我做的百度飞桨PaddleOCR .NET调用库

    我做的百度飞桨PaddleOCR .NET调用库 .NET Conf 2021中国我做了一次<.NET玩转计算机视觉OpenCV>的分享,其中提到了一个效果特别好的OCR识别引擎--百度飞 ...

  4. Ubuntu 百度飞桨和 CUDA 的安装

    Ubuntu 百度飞桨 和 CUDA 的安装 1.简介 本文主要是 Ubuntu 百度飞桨 和 CUDA 的安装 系统:Ubuntu 20.04 百度飞桨:2.2 为例 2.百度飞桨安装 访问百度飞桨 ...

  5. 百度飞桨数据处理 API 数据格式 HWC CHW 和 PIL 图像处理之间的关系

    使用百度飞桨 API 例如:Resize Normalize,处理数据的时候. Resize:如果输入的图像是 PIL 读取的图像这个数据格式是 HWC ,Resize 就需要 HWC 格式的数据. ...

  6. 【百度飞桨】手写数字识别模型部署Paddle Inference

    从完成一个简单的『手写数字识别任务』开始,快速了解飞桨框架 API 的使用方法. 模型开发 『手写数字识别』是深度学习里的 Hello World 任务,用于对 0 ~ 9 的十类数字进行分类,即输入 ...

  7. 【深度学习系列】PaddlePaddle之手写数字识别

    上周在搜索关于深度学习分布式运行方式的资料时,无意间搜到了paddlepaddle,发现这个框架的分布式训练方案做的还挺不错的,想跟大家分享一下.不过呢,这块内容太复杂了,所以就简单的介绍一下padd ...

  8. 【PaddlePaddle系列】手写数字识别

      最近百度为了推广自家编写对深度学习框架PaddlePaddle不断推出各种比赛.百度声称PaddlePaddle是一个“易学.易用”的开源深度学习框架,然而网上的资料少之又少.虽然百度很用心地提供 ...

  9. 【一】ERNIE:飞桨开源开发套件,入门学习,看看行业顶尖持续学习语义理解框架,如何取得世界多个实战的SOTA效果?

    ​ 参考文章: 深度剖析知识增强语义表示模型--ERNIE_财神Childe的博客-CSDN博客_ernie模型 ERNIE_ERNIE开源开发套件_飞桨 https://github.com/Pad ...

  10. OpenCV 玩九宫格数独(二):knn 数字识别

    欢迎大家关注腾讯云技术社区-博客园官方主页,我们将持续在博客园为大家推荐技术精品文章哦~ 作者:刘潇龙 前言 首先需要说明,这里所说的数字识别不是手写数字识别! 但凡对机器学习有所了解的人,相信看到数 ...

随机推荐

  1. c# Visual Studio|There is no editor available for ***,make sure the application for the file type(.vb) is installed问题解决方法

    这个问题出现在在使用VS编码当中,电脑意外关机,导致的文件的缺失或者损坏. 使用反编译软件(如:ILSpy)对编译后的 .EXE文件进行反编译,在翻遍的结果中将相关代码拷贝至目标路径下,替换所需文件. ...

  2. vue自动展示一、二级路由

    在vue项目中使用路由可以很方便的跳转要显示的页面 在初始页面当中,首先要显示的路由怎么实现呢? 只需要在index.js页面中存放路由的children:[...]最后加上 redirect:&qu ...

  3. 关于前端JS的一些常用方法和知识

    关于前端数据存储目前只解释有三种:cookie.localStorage.sessionStorage cookie解释:只针对当前session(会话)有效,关闭标签页即失效使用: 1 var ck ...

  4. BaseMapperX

    package cn.iocoder.yudao.framework.mybatis.core.mapper; import cn.iocoder.yudao.framework.common.poj ...

  5. Android笔记--案例:找回密码

    找回密码 具体实现: 登录成功: 报告密码不同: 报告验证码错误: 代码相关: 找回密码的界面很简单,不细说了,直接写就行 找回密码的逻辑实现: 下一次就去写数据存储啦! 拜拜!

  6. Qt实用技巧:在CentOS上使用linuxdeployqt打包发布qt程序

    前言   之前在ubuntu上发布qt程序相对还好,使用脚本,在麒麟上发布的时候,使用脚本就不太兼容,同时为了实现直接点击应用可以启动应用的效果,使用linuxdeployqt发布qt程序.  本篇文 ...

  7. Python的安装与配置(图文教程)

    安装Python 想要进行Python开发,首先需要下载和配置Python解释器. 下载Python 访问Python官网: https://www.python.org/ 点击downloads按钮 ...

  8. 能让Java开发者提高效率的10个工具

    ​ Java受到全球百万计开发者的追捧,已经演变为一门出色的编程语言.最终,这门语言随着技术的变化,不断的被改善以迎合变化的市场需求. 无论你是否拥有一家科技公司,软件已经成为几乎每一个企业不可或缺的 ...

  9. python基础篇:Python基础知识,帮助初学者快速入门

    Python是一种高级编程语言,它易于学习和使用,因此成为了许多人的首选编程语言.本文将介绍Python的基础知识,以帮助初学者快速入门. 安装Python 在开始学习Python之前,您需要安装Py ...

  10. 【事故】记一次意外把企业项目放到GitHub并被fork,如何使用DMCA下架政策保障隐私

    前言 缘由 在一个月黑风高的夜晚,正准备休息的我突然接到之前外包老总的亲切问候.一顿输出才知道三年前为了搭建流程化部署,将甲方的测试代码放到github上后忘记删除.现在被甲方的代码扫描机制扫到,并且 ...