SP6779 GSS7 - Can you answer these queries VII(线段树,树链剖分)
水题,只是坑点多,\(tag\)为\(0\)时可能也要\(pushdown\),所以要\(bool\)标记是否需要。最后树链剖分询问时注意线段有向!!!
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <iostream>
#include <numeric>
#define R(a,b,c) for(register int a = (b); a <= (c); ++a)
#define nR(a,b,c) for(register int a = (b); a >= (c); --a)
#define Swap(a,b) ((a) ^= (b) ^= (a) ^= (b))
#define MP make_pair
#ifdef QWQ
#define D_e_Line printf("\n------\n")
#define D_e(x) cerr << (#x) << " " << x << endl
#define C_e(x) cout << (#x) << " " << x << endl
#define FileOpen() freopen("in.txt", "r", stdin)
#define FileSave() freopen("out.txt", "w", stdout)
#define Pause() system("pause")
#include <cassert>
#define PASS fprintf(stderr, "Passing [%s] in LINE %d\n",__FUNCTION__,__LINE__)
#else
#define D_e_Line
#define D_e(x)
#define C_e(x)
#define FileOpen()
#define FileSave()
#define Pause()
#define PASS
#endif
using namespace std;
struct FastIO {
template<typename ATP> inline FastIO& operator >> (ATP &x) {
x = 0; int sign = 1; char c;
for(c = getchar(); c < '0' || c > '9'; c = getchar()) if(c == '-') sign = -1;
while(c >= '0' && c <= '9') x = x * 10 + (c ^ '0'), c = getchar();
if(sign == -1) x = -x;
return *this;
}
} io;
template<typename ATP> inline ATP Max(ATP x, ATP y) {
return x > y ? x : y;
}
template<typename ATP> inline ATP Min(ATP x, ATP y) {
return x < y ? x : y;
}
template<typename ATP> inline ATP Abs(ATP x) {
return x < 0 ? -x : x;
}
#include <vector>
const int N = 2e5 + 7;
struct Edge {
int nxt, pre;
} e[N << 1];
int head[N], cntEdge;
inline void add(int u, int v) {
e[++cntEdge] = (Edge){ head[u], v}, head[u] = cntEdge;
}
int fa[N], son[N], siz[N], dep[N], dfn[N], dfnIdx, top[N], rnk[N], val[N], n;
void DFS_First(int u, int father) {
dep[u] = dep[father] + 1, fa[u] = father, siz[u] = 1;
for(register int i = head[u]; i; i = e[i].nxt){
int v = e[i].pre;
if(v == father) continue;
DFS_First(v, u);
siz[u] += siz[v];
if(siz[v] > siz[son[u]]) son[u] = v;
}
}
void DFS_Second(int u, int Tp) {
top[u] = Tp, dfn[u] = ++dfnIdx, rnk[dfnIdx] = u;
if(!son[u]) return;
DFS_Second(son[u], Tp);
for(register int i = head[u]; i; i = e[i].nxt){
int v = e[i].pre;
if(v != fa[u] && v != son[u]) DFS_Second(v, v);
}
}
struct Seg {
int sum, val, pre, suf, tag;
bool flag;
Seg() {sum = val = pre = suf = tag = flag = 0;}
Seg operator + (const Seg &b) const {
Seg c;
c.sum = sum + b.sum;
c.val = Max(Max(val, b.val), suf + b.pre);
c.pre = Max(pre, sum + b.pre);
c.suf = Max(b.suf, b.sum + suf);
return c;
}
} t[N << 2];
#define ls rt << 1
#define rs rt << 1 | 1
#define lson rt << 1, l, mid
#define rson rt << 1 | 1, mid + 1, r
inline void Pushup(int &rt) {
t[rt] = t[ls] + t[rs];
}
inline void Pushdown(int &rt, int l, int mid, int r) {
t[ls].sum = (mid - l + 1) * t[rt].tag;
t[rs].sum = (r - mid) * t[rt].tag;
t[ls].pre = t[ls].val = t[ls].suf = Max(t[ls].sum, 0);
t[rs].pre = t[rs].val = t[rs].suf = Max(t[rs].sum, 0);
t[ls].flag = t[rs].flag = true;
t[ls].tag = t[rs].tag = t[rt].tag;
t[rt].tag = 0;
t[rt].flag = false;
}
void Build(int rt, int l, int r) {
if(l == r){
t[rt].sum = val[rnk[l]];
t[rt].val = t[rt].pre = t[rt].suf = Max(t[rt].sum, 0);
return;
}
int mid = (l + r) >> 1;
Build(lson), Build(rson);
Pushup(rt);
}
void Updata(int rt, int l, int r, int L, int R, int w) {
if(L <= l && r <= R){
t[rt].sum = (r - l + 1) * w;
t[rt].pre = t[rt].suf = t[rt].val = Max(t[rt].sum, 0);
t[rt].tag = w;
t[rt].flag = true;
return;
}
int mid = (l + r) >> 1;
if(t[rt].flag) Pushdown(rt, l, mid, r);
if(L <= mid) Updata(lson, L, R, w);
if(R > mid) Updata(rson, L, R, w);
Pushup(rt);
}
Seg Query(int rt, int l, int r, int L, int R) {
if(L <= l && r <= R) return t[rt];
int mid = (l + r) >> 1;
if(t[rt].flag) Pushdown(rt, l, mid, r);
Seg s;
if(L <= mid) s = Query(lson, L, R);
if(R > mid) s = s + Query(rson, L, R);
return s;
}
inline void Updata(int x, int y, int w) {
while(top[x] != top[y]){
if(dep[top[x]] < dep[top[y]]) Swap(x, y);
Updata(1, 1, n, dfn[top[x]], dfn[x], w);
x = fa[top[x]];
}
if(dep[x] < dep[y]) Swap(x, y);
Updata(1, 1, n, dfn[y], dfn[x], w);
}
//inline int Query(int x, int y) {
// Seg s;
// while(top[x] != top[y]){
// if(dep[top[x]] < dep[top[y]]) Swap(x, y);
// s = s + Query(1, 1, n, dfn[top[x]], dfn[x]);
// x = fa[top[x]];
// }
// if(dep[x] < dep[y]) Swap(x, y);
// Swap(s.suf, s.pre);
// return (s + Query(1, 1, n, dfn[y], dfn[x])).val;
//}
inline int Query(int x, int y) {
Seg L, R;
while(top[x] != top[y]){
if(dep[top[x]] < dep[top[y]]){
R = Query(1, 1, n, dfn[top[y]], dfn[y]) + R;
y = fa[top[y]];
}
else{
L = Query(1, 1, n, dfn[top[x]], dfn[x]) + L;
x = fa[top[x]];
}
}
if(dep[x] > dep[y]){
L = Query(1, 1, n, dfn[y], dfn[x]) + L;
}
else{
R = Query(1, 1, n, dfn[x], dfn[y]) + R;
}
Swap(L.pre, L.suf);
return (L + R).val;
}
int main() {
//FileOpen();
//FileSave();
io >> n;
R(i,1,n) io >> val[i];
R(i,2,n){
int u, v;
io >> u >> v;
add(u, v);
add(v, u);
}
DFS_First(1, 0);
DFS_Second(1, 1);
Build(1, 1, n);
int m;
io >> m;
while(m--){
int opt, l, r, w;
io >> opt >> l >> r;
if(opt == 1){
printf("%d\n", Query(l, r));
}
else{
io >> w;
Updata(l, r, w);
}
}
return 0;
}
/*
13
9 4 12 18 19 1 11 18 16 5 1 10 9 2 1
3 1
4 1
5 1
6 4
7 3
8 3
9 3
10 8
11 9
12 10
13 10
5
2 1 10 10
2 7 13 6
1 5 9
1 4 10
1 9 10
*/
SP6779 GSS7 - Can you answer these queries VII(线段树,树链剖分)的更多相关文章
- SP6779 GSS7 - Can you answer these queries VII
纯数据结构题,没有思维难度.直接用线段树求最大子段和的方法完成树上路径的合并.注意链上合并顺序要符合序列的前后顺序. #include <cstdio> #include <cstr ...
- 题解 SP6779 【GSS7 - Can you answer these queries VII】
题目传送门 题目大意 给出一个\(n\)个点的树,每个点有权值.有\(m\)次操作,每次要么查询一条链上的最大子段和,要么把一条链的权值都修改为一个常数. \(n,m\le 10^5\) 思路 如果是 ...
- SPOJ GSS7 - Can you answer these queries VII
板的不能再板,链剖+线段树或者是LCT随便维护. 感觉唯一要注意的是跳链的时候要对$x$向上跳和$y$向上跳的情况分开讨论,而不能直接$swap$,因为只有两段接触的端点才能相互合并,而且每一次向上跳 ...
- SPOJ GSS7 Can you answer these queries VII ——树链剖分 线段树
[题目分析] 问题放到了树上,直接链剖+线段树搞一搞. 调了300行+. (还是码力不够) [代码] #include <cstdio> #include <cstring> ...
- GSS7 spoj 6779. Can you answer these queries VII 树链剖分+线段树
GSS7Can you answer these queries VII 给出一棵树,树的节点有权值,有两种操作: 1.询问节点x,y的路径上最大子段和,可以为空 2.把节点x,y的路径上所有节点的权 ...
- GSS4 2713. Can you answer these queries IV 线段树
GSS7 Can you answer these queries IV 题目:给出一个数列,原数列和值不超过1e18,有两种操作: 0 x y:修改区间[x,y]所有数开方后向下调整至最近的整数 1 ...
- SPOJ GSS1_Can you answer these queries I(线段树区间合并)
SPOJ GSS1_Can you answer these queries I(线段树区间合并) 标签(空格分隔): 线段树区间合并 题目链接 GSS1 - Can you answer these ...
- 6779. Can you answer these queries VII - SPOJ
Given a tree with N ( N<=100000 ) nodes. Each node has a interger value x_i ( |x_i|<=10000 ). ...
- SPOJ GSS3 Can you answer these queries III[线段树]
SPOJ - GSS3 Can you answer these queries III Description You are given a sequence A of N (N <= 50 ...
随机推荐
- 0-1knapsack
Python 实现0-1背包问题(回溯法) 题目 解题思路 回溯法:为了避免生成那些不可能产生最佳解的问题状态,要不断地利用限界函数(bounding function)来处死那些实际上不可能产生所需 ...
- 基于Kubernetes v1.24.0的集群搭建(三)
1 使用kubeadm部署Kubernetes 如无特殊说明,以下操作可以在所有节点上进行. 1.1 首先我们需要配置一下阿里源 cat <<EOF > /etc/yum.repos ...
- 【RocketMQ】Broker服务注册
Broker注册 在Broker的启动函数中,添加了定时向NameServer进行注册的任务,在启动后延迟10秒向NameServer进行注册,之后定时发送心跳包,关于发送周期,首先从Broker配置 ...
- java类的学习
什么是类: 类=属性+方法 属性来源于状态(以变量的形式存在):方法来源于动作: *属性对应的是数据,而数据只能存在变量中. 方法内的变量为局部变量:类体中的变量称为成员变量(也称为属性) java中 ...
- 教你如何用网页开发APP
用到的工具: HBuilderX app开发版1.首先你得网站必须是上线的,然后明确这一点后,点击打开HBuilderX.在文件里找到新建项目,选择wap2App,将下面信息填写完整,然后创建. 2. ...
- python基础知识-day6(函数知识)
1.函数的特点 函数式的编程范式 面向对象的编程范式 所谓函数,就是把重复的代码单独的分离出来,放在一个公共的地方,以后可以一只调用,这样就可以解决多次重复来编写. 2.函数的定义 1 def fun ...
- 自定义监控lvs
1. 修改zabbix_agent配置文件添加以下内容,重启agent Include=/etc/zabbix/zabbix_agentd.d/ 2. 在zabbix安装目录下的scripts目录下添 ...
- sql-DQL-单表查询
单表查询 select [distint]* 字段列表 from 表名列表 where 条件列表 group by 分组字段 having 分组之后的条件 order by 排序 limit 分页限定 ...
- python小题目练习(九)
题目:将美元转化为人民币 需求:实现如图所示需求 代码展示: """Author:mllContent:将美元转化为人民币Date:2020-11-23"&q ...
- [BJDCTF2020]The mystery of ip|[CISCN2019 华东南赛区]Web11|SSTI注入
记录一下BUUCTF中两个类似的SSTI注入关卡 [BJDCTF2020]The mystery of ip-1: 1.打开之后显示如下: 2.在hint.php中进行了相关提示,如下: 3.既然获取 ...