$ f[j]=max(f[i−1][j],f[i−1][j−1]+(x == j) $

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#define R(a,b,c) for(register int a = (b); a <= (c); ++ a)
#define nR(a,b,c) for(register int a = (b); a >= (c); -- a)
#define Max(a,b) ((a) > (b) ? (a) : (b))
#define Min(a,b) ((a) < (b) ? (a) : (b))
#define Fill(a,b) memset(a, b, sizeof(a))
#define Swap(a,b) a^=b^=a^=b
#define ll long long
#define ON_DEBUG #ifdef ON_DEBUG #define D_e_Line printf("\n\n----------\n\n")
#define D_e(x) cout << #x << " = " << x << endl
#define Pause() system("pause") #else #define D_e_Line ; #endif struct ios{
template<typename ATP>ios& operator >> (ATP &x){
x = 0; int f = 1; char c;
for(c = getchar(); c < '0' || c > '9'; c = getchar()) if(c == '-') f = -1;
while(c >= '0' && c <= '9') x = x * 10 + (c ^ '0'), c = getchar();
x*= f;
return *this;
}
}io;
using namespace std; int f[1007]; int main(){
int n;
io >> n;
R(i,1,n){
int x;
io >> x;
nR(j,i,1)
f[j] = Max(f[j], f[j-1] + (x == j));
}
int ans = 0;
R(i,1,n){
ans = Max(ans, f[i]);
}
printf("%d", ans);
return 0;
}

LuoguP1799 数列_NOI导刊2010提高 (动态规划)的更多相关文章

  1. P1799 数列_NOI导刊2010提高(06)

    P1799 数列_NOI导刊2010提高(06)f[i][j]表示前i个数删去j个数得到的最大价值.if(i-j==x) f[i][j]=max(f[i][j],f[i-1][j]+1); else ...

  2. 「LuoguP1799」 数列_NOI导刊2010提高(06)

    题目描述 虽然msh长大了,但她还是很喜欢找点游戏自娱自乐.有一天,她在纸上写了一串数字:1,1,2,5,4.接着她擦掉了一个l,结果发现剩下1,2,4都在自己所在的位置上,即1在第1位,2在第2位, ...

  3. 洛谷——P1775 古代人的难题_NOI导刊2010提高(02)&& P1936 水晶灯火灵(斐波那契数列)

    P1775 古代人的难题_NOI导刊2010提高(02) P1936 水晶灯火灵 斐波那契数列 1.x,y∈[1…k],且x,y,k∈Z 2.(x^2-xy-y^2)^2=1 给你一个整数k,求一组满 ...

  4. P1774 最接近神的人_NOI导刊2010提高(02)

    P1774 最接近神的人_NOI导刊2010提高(02) 关于此题为什么可以使用求逆序对的方法来做 假设一个数\(a_i\),且前\(i-1\)个数已经成为单调增的数列. 我们要从前\(a_1\)至\ ...

  5. 洛谷——P1966 火柴排队&&P1774 最接近神的人_NOI导刊2010提高(02)

    P1966 火柴排队 这题贪心显然,即将两序列中第k大的数的位置保持一致,证明略: 树状数组求逆序对啦 浅谈树状数组求逆序对及离散化的几种方式及应用 方法:从前向后每次将数插入到bit(树状数组)中, ...

  6. P1771 方程的解_NOI导刊2010提高(01)

    P1771 方程的解_NOI导刊2010提高(01) 按题意用快速幂把$g(x)$求出来 发现这不就是个组合数入门题吗! $k$个人分$g(x)$个苹果,每人最少分$1$个,有几种方法? 根据插板法, ...

  7. 【洛谷】【堆】P1801 黑匣子_NOI导刊2010提高(06)

    [题目描述:] Black Box是一种原始的数据库.它可以储存一个整数数组,还有一个特别的变量i.最开始的时候Black Box是空的.而i等于0.这个Black Box要处理一串命令. 命令只有两 ...

  8. 洛谷 P1777 帮助_NOI导刊2010提高(03) 解题报告

    P1777 帮助_NOI导刊2010提高(03) 题目描述 Bubu的书架乱成一团了!帮他一下吧! 他的书架上一共有n本书.我们定义混乱值是连续相同高度书本的段数.例如,如果书的高度是30,30,31 ...

  9. P1776 宝物筛选_NOI导刊2010提高(02)&& 多重背包二进制优化

    多重背包, 要求 \(N\log N\) 复杂度 Solution 众所周和, \(1-N\) 之内的任何数可以由 \(2^{0}, 2^{1}, 2^{2} ... 2^{\log N}, N - ...

随机推荐

  1. 第06组Alpha冲刺总结

    目录 1. 基本情况 2. 思考与总结 2.1. 设想和目标 2. 计划 3. 资源 4. 变更管理 5. 设计/实现 6. 测试/发布 7. 团队的角色,管理,合作 8. 总结 3. 敏捷开发 1. ...

  2. MASA Auth - SSO与Identity设计

    AAAA AAAA即认证.授权.审计.账号(Authentication.Authorization.Audit.Account).在安全领域我们绕不开的两个问题: 授权过程可靠:让第三方程序能够访问 ...

  3. 开发工具-Redis Desktop Manager下载地址

    更新记录 2022年6月10日 完善标题. 官方: https://github.com/uglide/RedisDesktopManager 免费打包版: https://github.com/le ...

  4. 能快速搭建三维场景,这款3D全场景编辑器你还没用过吗?

    今天就给大家分享一个非常好用的老子云3D全场景编辑器,不仅可以基于GIS数据,帮助用户快速搭建3D城市大场景.实现Web端流畅展示. 并且搭建的3D场景可离线开发成一个空间信息直观的.可交互.易于设计 ...

  5. BUUCTF-LSB

    LSB 看到这个题目应该是LSB隐写,StegSolve打开,在红绿蓝0号上发现图片信息 然后在Analyse选择data extract Save bin保存图片即可 得到的是个二维码,解码即可.

  6. javascript写无缝平移的轮播图

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  7. 监听 Markdown 文件并热更新 Next.js 页面

    Next.js 提供了 Fast-Refresh 能力,它可以为您对 React 组件所做的编辑提供即时反馈. 但是,当你通过 Markdown 文件提供网站内容时,由于 Markdown 不是 Re ...

  8. RabbitMD大揭秘

    RabbitMD大揭秘 欢迎关注H寻梦人公众号 通过SpringBoot整合RabbitMQ的案例来说明,RabbitMQ相关的各个属性以及使用方式:并通过相关源码深刻理解. Queue(消息队列) ...

  9. Linux命令格式、终端类型和获取帮助的方法

    Linux用户类型 Root用户:超级管理员,权限很大 普通用户:权限有限 终端 terminal 终端类型 物理终端:鼠标.键盘.显示器 虚拟终端:软件模拟出来的终端 控制台终端: /dev/con ...

  10. bat实现删除BCUnrar.dll实现无限使用

    删除项目:计算机\HKEY_CURRENT_USER\Software\Scooter Software\Beyond Compare 4下的CacheId 项可以实现Beyond Compare 4 ...