Prim:

Prim的思想是将任意节点作为根,再找出与之相邻的所有边(用一遍循环即可),再将新节点更新并以此节点作为根继续搜,维护一个数组:dis,作用为已用点到未用点的最短距离。

证明:Prim算法之所以是正确的,主要基于一个判断:对于任意一个顶点v,连接到该顶点的所有边中的一条最短边(v, vj)必然属于最小生成树(即任意一个属于最小生成树的连通子图,从外部连接到该连通子图的所有边中的一条最短边必然属于最小生成树)

具体算法流程图解如下:

#include <bits/stdc++.h>
typedef long long ll;
using namespace std;
const int mod = 510000;
int he[mod], dis[mod], vis[mod], cns, cnt, n, m, sum;
typedef pair<int, int> PII;
priority_queue<PII, vector<PII>, greater<PII>> q;
struct eage
{
int a, w, next;
} e[mod << 1];
////链式前向星加边
void add(int x, int a, int w)
{
e[++cnt].a = a;
e[cnt].w = w;
e[cnt].next = he[x];
he[x] = cnt;
}
void solve1()
{
q.push({0, 1});
while (!q.empty() && cns < n)
{
int d = q.top().first, a = q.top().second;
q.pop();
if (vis[a] == 1)
continue;
cns++;
sum += d;
vis[a] = 1;
for (int j = he[a]; j != -1; j = e[j].next)
{
if (e[j].w < dis[e[j].a])//判断该点石否走过,未走过则加入优先队列
{
dis[e[j].a] = e[j].w;
q.push({e[j].w, e[j].a});
}
}
}
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
memset(he, -1, sizeof(he));
memset(dis, 127, sizeof(dis));
cin >> n >> m;
for (int i = 1; i <= m; i++)
{
int a, b, w;
cin >> a >> b >> w;
add(a, b, w);
add(b, a, w);
}
solve1();
if (cns == n)
cout << sum;
else
cout << "orz";
return 0;
}

最小生成树 链式前向星 Prim&Kruskal的更多相关文章

  1. 链式前向星+SPFA

    今天听说vector不开o2是数组时间复杂度常数的1.5倍,瞬间吓傻.然后就问好的图表达方式,然后看到了链式前向星.于是就写了一段链式前向星+SPFA的,和普通的vector+SPFA的对拍了下,速度 ...

  2. 单元最短路径算法模板汇总(Dijkstra, BF,SPFA),附链式前向星模板

    一:dijkstra算法时间复杂度,用优先级队列优化的话,O((M+N)logN)求单源最短路径,要求所有边的权值非负.若图中出现权值为负的边,Dijkstra算法就会失效,求出的最短路径就可能是错的 ...

  3. hdu2647 逆拓扑,链式前向星。

    pid=2647">原文地址 题目分析 题意 老板发工资,可是要保证发的工资数满足每一个人的期望,比方A期望工资大于B,仅仅需比B多1元钱就可以.老板发的最低工资为888元.输出老板最 ...

  4. 图的存储结构:邻接矩阵(邻接表)&链式前向星

    [概念]疏松图&稠密图: 疏松图指,点连接的边不多的图,反之(点连接的边多)则为稠密图. Tips:邻接矩阵与邻接表相比,疏松图多用邻接表,稠密图多用邻接矩阵. 邻接矩阵: 开一个二维数组gr ...

  5. 【模板】链式前向星+spfa

    洛谷传送门--分糖果 博客--链式前向星 团队中一道题,数据很大,只能用链式前向星存储,spfa求单源最短路. 可做模板. #include <cstdio> #include <q ...

  6. zzuli 2131 Can Win dinic+链式前向星(难点:抽象出网络模型+建边)

    2131: Can Win Time Limit: 1 Sec  Memory Limit: 128 MB Submit: 431  Solved: 50 SubmitStatusWeb Board ...

  7. HDU1532 Drainage Ditches SAP+链式前向星

    Drainage Ditches Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  8. zzuli 2130: hipercijevi 链式前向星+BFS+输入输出外挂

    2130: hipercijevi Time Limit: 1 Sec  Memory Limit: 128 MB Submit: 595  Solved: 112 SubmitStatusWeb B ...

  9. UESTC30-最短路-Floyd最短路、spfa+链式前向星建图

    最短路 Time Limit: 3000/1000MS (Java/Others) Memory Limit: 65535/65535KB (Java/Others) 在每年的校赛里,所有进入决赛的同 ...

随机推荐

  1. Dom基础(二):Dom性能优化

    一.尽量将DOM查询做缓存 1 let pElements = document.getElementById('div1') //将dom缓存 2 3 for(let i=0:i<pEleme ...

  2. HTTP:聊一聊HTTPS

    一.什么是https https是http的升级,因为http是明文传输的,所以非常不安全,https在http的基础上进行了数据加密. 二.https的加密方式 1.对称加密 服务端会给客户端发送一 ...

  3. 算法篇(1) KMP JS实现最优查找子串

    var strStr = function (haystack, needle) { let i=0, j = 0; let length = haystack.length; let next = ...

  4. zookeeper篇-zookeeper客户端和服务端的基础命令

    点赞再看,养成习惯,微信搜索「小大白日志」关注这个搬砖人. 文章不定期同步公众号,还有各种一线大厂面试原题.我的学习系列笔记. 前提:我把zookeepee安装在了服务器/usr/local/java ...

  5. ABP应用开发(Step by Step)-下篇

    测试 ProductAppService 类 启动模板附带测试基础架构,包括xUnit.Shouldly和NSubstitute库.它使用SQLite 内存数据库来模拟数据库,并为每个测试创建一个单独 ...

  6. Bugku CTF练习题---分析---flag被盗

    Bugku CTF练习题---分析---flag被盗 flag:flag{This_is_a_f10g} 解题步骤: 1.观察题目,下载附件 2.下载的文件是一个数据包,果断使用wireshark打开 ...

  7. SpringBoot程序预装载数据

    简介 在项目实际的开发过程中,有时候会遇到需要在应用程序启动完毕对外提供服务之前预先将部分数据装载到缓存的需求.本文就总结了常见的数据预装载方式及其实践. 适用场景 预装载应用级别数据到缓存:如字典数 ...

  8. ChCore Lab3 用户进程和异常处理 实验笔记

    本文为上海交大 ipads 研究所陈海波老师等人所著的<现代操作系统:原理与实现>的课程实验(LAB)的学习笔记的第三篇:用户进程与异常处理.所有章节的笔记可在此处查看:chcore | ...

  9. 一文详解 FTP、FTPS 与 SFTP 的原理

    开源Linux 长按二维码加关注~ 上一篇:2020年MySQL数据库面试题总结 无论是网盘还是云存储,上传都是一项很简单的操作.那些便捷好用的上传整理工具所用的 FTP 协议到底是什么意义,繁杂的模 ...

  10. svelte组件:svelte3.x自定义美化虚拟滚动条组件svelte-scrollbar

    基于svelte3.0自定义pc端虚拟滚动条组件svelteScrollbar. svelte-scrollbar:运用svelte3.x创建的桌面pc版自定义美化滚动条组件.支持是否原生滚动条.自动 ...