LGP6667题解
既然看到了这道“板子”,那还是来写一下题解吧。。。
如果有机会希望能推一下 载谈binominial sum 的做法。
\]
看到组合数和多项式求值就去想下降幂吧,因为没什么别的好办法了。。。
设下降幂多项式 \(g(x)=f(x)\)。
\]
自从联合省选 2020 之后全世界都知道了 \(\binom n m m^{\underline k}=\binom {n-k} {m-k} n^{\underline k}\)。
\]
\]
后面根据二项式定理得到是 \(1\)。
\]
然后把点值乘上 \(e^{-x}\) 就是下降幂多项式了。
#include<cstring>
#include<cstdio>
#include<cctype>
#define IMP(lim,anw) for(i=0;i^(lim);++i)anw
typedef unsigned ui;
const ui M=1e5+5,mod=998244353;
ui buf[M<<2];ui *now=buf,*w[23];
ui n,m,x,f[M],g[M];
inline void swap(ui&a,ui&b){
ui c=a;a=b;b=c;
}
inline ui Add(const ui&a,const ui&b){
return a+b>=mod?a+b-mod:a+b;
}
inline ui Del(const ui&a,const ui&b){
return b>a?a-b+mod:a-b;
}
inline void px(ui*f,ui*g,const ui&len){
for(ui i=0;i^len;++i)f[i]=1ull*f[i]*g[i]%mod;
}
inline ui pow(ui a,ui b=mod-2){
ui ans=1;
for(;b;b>>=1,a=1ull*a*a%mod)if(b&1)ans=1ull*ans*a%mod;
return ans;
}
inline void NTT_init(const ui&m){
ui i,j,n,lim(0);while((1<<lim)<m)++lim;n=1<<lim++;
w[lim]=now;now+=1<<lim-1;
w[lim][0]=1;w[lim][1]=pow(3,(mod-1>>1)/n);
for(i=2;i<(1<<lim-1);++i)w[lim][i]=1ull*w[lim][i-1]*w[lim][1]%mod;
for(j=lim-1;j>=1;--j){
w[j]=now;now+=1<<j;
IMP(1<<j,w[j][i]=w[j+1][i<<1]);
}
}
inline void DFT(ui*f,const ui&n,const ui&M){
ui i,k,d,x,y,*W,*fl,*fr,len;
for(len=n>>1,d=M-1;len^0;len>>=1,--d){
W=w[d];
for(k=0;k^n;k+=len<<1){
fl=f+(k);fr=f+(k|len);
IMP(len,(x=fl[i],y=fr[i])),fl[i]=Add(x,y),fr[i]=1ull*Del(x,y)*W[i]%mod;
}
}
}
inline void IDFT(ui*f,const ui&n,const ui&M){
ui i,k,d,x,y,*W,*fl,*fr,len;
for(len=1,d=1;len^n;len<<=1,++d){
W=w[d];
for(k=0;k^n;k+=len<<1){
fl=f+(k);fr=f+(k|len);
IMP(len,(x=fl[i],y=1ull*fr[i]*W[i]%mod)),fl[i]=Add(x,y),fr[i]=Del(x,y);
}
}
k=pow(n);IMP(n,f[i]=1ull*f[i]*k%mod);
for(i=1;(i<<1)<n;++i)swap(f[i],f[n-i]);
}
signed main(){
ui i,n,a(1),b(1),ans(0),len(0);
scanf("%u%u%u",&n,&m,&x);++m;NTT_init(m<<1);g[0]=1;
for(i=0;i<m;++i)scanf("%u",f+i);while((1<<len)<(m<<1))++len;
for(i=1;i<m;++i)g[i]=1ull*g[i-1]*i%mod;g[m-1]=pow(g[m-1],mod-2);
for(i=m-2;i>=1;--i)g[i]=g[i+1]*(i+1ull)%mod;
for(i=0;i<m;++i)f[i]=1ull*f[i]*g[i]%mod;for(i=1;i<m;i+=2)g[i]=mod-g[i];
DFT(f,1<<len,len+1);DFT(g,1<<len,len+1);px(f,g,1<<len);IDFT(f,1<<len,len+1);
for(i=0;i<m;++i)ans=(ans+1ull*f[i]*a%mod*b)%mod,a=1ull*a*(n-i)%mod,b=1ull*b*x%mod;printf("%u",ans);
}
LGP6667题解的更多相关文章
- 2016 华南师大ACM校赛 SCNUCPC 非官方题解
我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...
- noip2016十连测题解
以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...
- BZOJ-2561-最小生成树 题解(最小割)
2561: 最小生成树(题解) Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1628 Solved: 786 传送门:http://www.lyd ...
- Codeforces Round #353 (Div. 2) ABCDE 题解 python
Problems # Name A Infinite Sequence standard input/output 1 s, 256 MB x3509 B Restoring P ...
- 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解
题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...
- 2016ACM青岛区域赛题解
A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Jav ...
- poj1399 hoj1037 Direct Visibility 题解 (宽搜)
http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...
- 网络流n题 题解
学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...
- CF100965C题解..
求方程 \[ \begin{array}\\ \sum_{i=1}^n x_i & \equiv & a_1 \pmod{p} \\ \sum_{i=1}^n x_i^2 & ...
随机推荐
- Java实现二叉搜索树
原创:转载需注明原创地址 https://www.cnblogs.com/fanerwei222/p/11406176.html 尝试一下用Java实现二叉搜索树/二叉查找树,记录自己的学习历程. 1 ...
- 简单模拟Java中反射的应用场景
有人说Java是一门静态语言.那么何为静态语言,动态语言又是什么? 1.动态语言 是一类在运行时可以改变其结构的语言:例如新的函数.对象.甚至代码可以 被引进,已有的函数可以被删除或是其他结构上的变化 ...
- python基础语法_9-1闭包 装饰器补充
1.闭包的概念 closure:内部函数中对enclosing作用域的变量进行引用,外部函数返回内部函数名 2.函数实质与属性 函数是一个对象:在内存中有一个存储空间 函数执行完成后内部变量回收: ...
- Solution -「洛谷 P6577」「模板」二分图最大权完美匹配
\(\mathcal{Description}\) Link. 给定二分图 \(G=(V=X\cup Y,E)\),\(|X|=|Y|=n\),边 \((u,v)\in E\) 有权 \(w( ...
- PHP获取用户IP地址
PHP获取访问者IP地址 这是一段 PHP 代码,演示了如何获得来访者的IP address. <?php//打印出IP地址:echo (GetIP());function GetIP() / ...
- 部署 Docker Registry 并配置认证登录
文章目录 搭建 Docker Registry 创建本地映射目录 启动 Docker Registry 配置 Docker Registry 配置 Docker Registry 认证 启动带认证的 ...
- 给博客加入链接安全跳转页(添加一个和CSDN一样的链接跳转页)
本文首发于青云工作室 原文链接为 https://qystudio.ltd/posts/25250.html 前言 或是出于优化 SEO,或是出于加强网站体验,很多博客都给文章中的外部链接加上了个二次 ...
- Devops 开发运维高级篇之微服务代码上传和代码检查
Devops 开发运维高级篇之微服务代码上传和代码检查 微服务持续集成(1)-项目代码上传到Gitlab 微服务持续集成(2)-从Gitlab拉取项目源码 微服务持续集成(3)-提交到SonarQub ...
- c# 编程学习(四)
逻辑AND(逻辑与)操作符(用&&表示)和逻辑OR(逻辑或) 操作符(用||表示).这两个操作符统称条件逻辑操作符.只有作为操作数的两个布尔表达式都为 true.操作符&&am ...
- Python之ini配置文件详解
INI介绍 INI是英文"初始化"(initialization)的缩写,被用来对操作系统或特定程序初始化或进行参数设置.由节(section). 键(key).值(value)构 ...