LGP6667题解
既然看到了这道“板子”,那还是来写一下题解吧。。。
如果有机会希望能推一下 载谈binominial sum 的做法。
\]
看到组合数和多项式求值就去想下降幂吧,因为没什么别的好办法了。。。
设下降幂多项式 \(g(x)=f(x)\)。
\]
自从联合省选 2020 之后全世界都知道了 \(\binom n m m^{\underline k}=\binom {n-k} {m-k} n^{\underline k}\)。
\]
\]
后面根据二项式定理得到是 \(1\)。
\]
然后把点值乘上 \(e^{-x}\) 就是下降幂多项式了。
#include<cstring>
#include<cstdio>
#include<cctype>
#define IMP(lim,anw) for(i=0;i^(lim);++i)anw
typedef unsigned ui;
const ui M=1e5+5,mod=998244353;
ui buf[M<<2];ui *now=buf,*w[23];
ui n,m,x,f[M],g[M];
inline void swap(ui&a,ui&b){
ui c=a;a=b;b=c;
}
inline ui Add(const ui&a,const ui&b){
return a+b>=mod?a+b-mod:a+b;
}
inline ui Del(const ui&a,const ui&b){
return b>a?a-b+mod:a-b;
}
inline void px(ui*f,ui*g,const ui&len){
for(ui i=0;i^len;++i)f[i]=1ull*f[i]*g[i]%mod;
}
inline ui pow(ui a,ui b=mod-2){
ui ans=1;
for(;b;b>>=1,a=1ull*a*a%mod)if(b&1)ans=1ull*ans*a%mod;
return ans;
}
inline void NTT_init(const ui&m){
ui i,j,n,lim(0);while((1<<lim)<m)++lim;n=1<<lim++;
w[lim]=now;now+=1<<lim-1;
w[lim][0]=1;w[lim][1]=pow(3,(mod-1>>1)/n);
for(i=2;i<(1<<lim-1);++i)w[lim][i]=1ull*w[lim][i-1]*w[lim][1]%mod;
for(j=lim-1;j>=1;--j){
w[j]=now;now+=1<<j;
IMP(1<<j,w[j][i]=w[j+1][i<<1]);
}
}
inline void DFT(ui*f,const ui&n,const ui&M){
ui i,k,d,x,y,*W,*fl,*fr,len;
for(len=n>>1,d=M-1;len^0;len>>=1,--d){
W=w[d];
for(k=0;k^n;k+=len<<1){
fl=f+(k);fr=f+(k|len);
IMP(len,(x=fl[i],y=fr[i])),fl[i]=Add(x,y),fr[i]=1ull*Del(x,y)*W[i]%mod;
}
}
}
inline void IDFT(ui*f,const ui&n,const ui&M){
ui i,k,d,x,y,*W,*fl,*fr,len;
for(len=1,d=1;len^n;len<<=1,++d){
W=w[d];
for(k=0;k^n;k+=len<<1){
fl=f+(k);fr=f+(k|len);
IMP(len,(x=fl[i],y=1ull*fr[i]*W[i]%mod)),fl[i]=Add(x,y),fr[i]=Del(x,y);
}
}
k=pow(n);IMP(n,f[i]=1ull*f[i]*k%mod);
for(i=1;(i<<1)<n;++i)swap(f[i],f[n-i]);
}
signed main(){
ui i,n,a(1),b(1),ans(0),len(0);
scanf("%u%u%u",&n,&m,&x);++m;NTT_init(m<<1);g[0]=1;
for(i=0;i<m;++i)scanf("%u",f+i);while((1<<len)<(m<<1))++len;
for(i=1;i<m;++i)g[i]=1ull*g[i-1]*i%mod;g[m-1]=pow(g[m-1],mod-2);
for(i=m-2;i>=1;--i)g[i]=g[i+1]*(i+1ull)%mod;
for(i=0;i<m;++i)f[i]=1ull*f[i]*g[i]%mod;for(i=1;i<m;i+=2)g[i]=mod-g[i];
DFT(f,1<<len,len+1);DFT(g,1<<len,len+1);px(f,g,1<<len);IDFT(f,1<<len,len+1);
for(i=0;i<m;++i)ans=(ans+1ull*f[i]*a%mod*b)%mod,a=1ull*a*(n-i)%mod,b=1ull*b*x%mod;printf("%u",ans);
}
LGP6667题解的更多相关文章
- 2016 华南师大ACM校赛 SCNUCPC 非官方题解
我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...
- noip2016十连测题解
以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...
- BZOJ-2561-最小生成树 题解(最小割)
2561: 最小生成树(题解) Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1628 Solved: 786 传送门:http://www.lyd ...
- Codeforces Round #353 (Div. 2) ABCDE 题解 python
Problems # Name A Infinite Sequence standard input/output 1 s, 256 MB x3509 B Restoring P ...
- 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解
题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...
- 2016ACM青岛区域赛题解
A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Jav ...
- poj1399 hoj1037 Direct Visibility 题解 (宽搜)
http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...
- 网络流n题 题解
学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...
- CF100965C题解..
求方程 \[ \begin{array}\\ \sum_{i=1}^n x_i & \equiv & a_1 \pmod{p} \\ \sum_{i=1}^n x_i^2 & ...
随机推荐
- ubuntu 修改文件及文件夹的权限
转载请注明来源:https://www.cnblogs.com/hookjc/ 打开终端进入你需要修改的目录然后执行下面这条命令chmod 777 * -R全部子目录及文件权限改为 777 来源:py ...
- 认识Html DOM
1.认识HTML DOM HTML Document Object Model 即:超文本标记语言-文档对象模型 HTML DOM理解为网页的API.它将网页中的各个元素都看作一个个对象,从而使网页中 ...
- Linux防火墙(iptables/firewalld)
Linux防火墙(iptables/firewalld) 目录 Linux防火墙(iptables/firewalld) 一.iptables 1. iptables概述 2. netfilter和i ...
- 虫师Selenium2+Python_8、自动化测试高级应用
P205--HTML测试报告 P213--自动发邮件功能 P221--Page Object 设计模式
- Spring5源码解析系列一——IoC容器核心类图
基本概念梳理 IoC(Inversion of Control,控制反转)就是把原来代码里需要实现的对象创建.依赖,反转给容器来帮忙实现.我们需要创建一个容器,同时需要一种描述来让容器知道要创建的对象 ...
- Solution -「CF 908D」New Year&Arbitrary Arrangement
\(\mathcal{Description}\) Link. 给定 \(n,p_a,p_b\),初始有一个空串,每次操作有 \(\frac{p_a}{p_a+p_b}\) 的概率在其后添加字 ...
- ssh 主机之间免密配置脚本
文章目录 单向免密 `expect` 免交互 `sshpass` 免交互 相互免密 单向免密 expect 免交互 注意修改脚本内的 your_password 为 远程主机用户的密码 脚本内的 &q ...
- python进阶(25)协程
协程的定义 协程(Coroutine),又称微线程,纤程.(协程是一种用户态的轻量级线程) 作用:在执行 A 函数的时候,可以随时中断,去执行 B 函数,然后中断B函数,继续执行 A 函数 (可以自动 ...
- git使用小技巧-忽略提交文件设置
前言 我们可以把自己的代码放到github上,但是我们有的文件或者文件夹不想提交到github上,这时候用到一个忽略文件 操作方法 * 在项目根目录创建一个 .gitignore文件 * 打开.git ...
- CobaltStrike逆向学习系列(3):Beacon C2Profile 解析
这是[信安成长计划]的第 3 篇文章 关注微信公众号[信安成长计划] 0x00 目录 0x01 Controller 端分析 0x02 Beacon 端分析 0x03 展示图 在上一篇文章中完成了 S ...