AGC007E Shik and Travel

题目大意:\(n\) 个点的二叉树,每个点要么两个儿子,要么没有儿子,每条边有边权。

你从 \(1\) 号节点出发,走到一个叶子节点。然后每一天,你可以从当前点走到另一个叶子。最后回到 \(1\) 号节点,要求到过所有叶子并且每条边经过恰好两次。求一种遍历顺序,使得每相邻两叶子间的边权和的最大值最小。

题解

考虑二分最大值,看是否可行。这个点是一种类似等号转限制的做法。

因此我们只需考虑能否在不经过权值和大于 \(k\) 的叶子间的路径即可。这个怎么做呢?由于我们只关心距离,我们对于每个点可以得到一些数对 \((a,b)\) ,表示当前点子树中可以从距离当前点距离为 \(a\) 的叶子进入,从距离当前点距离为 \(b\) 的叶子退出。并且记 \(S_u\) 为对于 \(u\) 这个点来说形如 \((a,b)\) 的数对集合。

对于没有儿子的点,存在数对 \((0,0)\) 。而对于有儿子的点,由题目限制每条边和每个叶子恰好过两次,可知一个子树内的叶子肯定先互相到达,再离开当前子树,去与最近的子树中的叶子互达。因此我们得到一个非叶子节点的数对,等价于我们将其左右子树的某两个叶子相连接,用左右子树的数对表示,可以得到对于一个子树的数对 \((a,b)\) 和另一个子树的数对 \((c,d)\) ,当 \(b+c+val[u][0]+val[u][1]\le k\) 时(\(val[u][0/1]\) 表示 \(u\) 向左右儿子的边权),这两个数对可以合并,得到数对 \((a+val[u][0],b+val[u][1])\) ,这是默认 \((a,b)\) 为左子树数对,反过来的话 \(val\) 换一下就好。

但是直接暴力合并数对是寄的。我们考虑优化,显然对于两个点对 \((a,b)\) 和 \((c,d)\) ,如果 \(a\le c,b\le d\) ,那么可以知道 \((c,d)\) 是无用的。其次由于我们希望合并出来的数对的两个值都尽量小,且每个数对 \((a,b)\) 都满足 \(a+b\le k\) ,我们对于一个子树中的数对肯定有唯一的一个另一个子树的数对与之对应来得到最小的数对。

我们对于数对按照 \(a\) 从小到大排序,那么由于 \(a+b\le k\) 显然 \(b\) 递减,我们考虑决策单调性来合并即可。

然后我们有决策单调性的话,显然复杂度就是数对总数的,然后由于是一个二叉树,易证复杂度 \(O(n\log n)\) ,总复杂度 \(O(34n\log n)\)。(\(34\) 是二分复杂度)

参考代码:

#include<bits/stdc++.h>
#define ll long long
#define db double
#define filein(a) freopen(#a".in","r",stdin)
#define fileot(a) freopen(#a".out","w",stdout)
#define sky fflush(stdout);
#define gc getchar
#define pc putchar
namespace IO{
inline bool blank(const char &c){
return c==' ' or c=='\n' or c=='\t' or c=='\r' or c==EOF;
}
inline void gs(char *s){
char ch=gc();
while(blank(ch) ) {ch=gc();}
while(!blank(ch) ) {*s++=ch;ch=gc();}
*s=0;
}
inline void gs(std::string &s){
char ch=gc();s+='#';
while(blank(ch) ) {ch=gc();}
while(!blank(ch) ) {s+=ch;ch=gc();}
}
inline void ps(char *s){
while(*s!=0) pc(*s++);
}
inline void ps(const std::string &s){
for(auto it:s)
if(it!='#') pc(it);
}
template<class T>
inline void read(T &s){
s=0;char ch=gc();bool f=0;
while(ch<'0'||'9'<ch) {if(ch=='-') f=1;ch=gc();}
while('0'<=ch&&ch<='9') {s=s*10+(ch^48);ch=gc();}
if(ch=='.'){
db p=0.1;ch=gc();
while('0'<=ch&&ch<='9') {s=s+p*(ch^48);p*=0.1;ch=gc();}
}
s=f?-s:s;
}
template<class T,class ...A>
inline void read(T &s,A &...a){
read(s);read(a...);
}
};
using IO::read;
using IO::gs;
using IO::ps;
const int N=(1<<17)+3;
int n;
int ch[N][2],val[N][2];
struct node{
int a,b;
};
std::vector<node>S[N],psc;
void dfs(int u,ll k){
S[u].clear();
if(!ch[u][0]){
S[u].push_back({0,0});
return;
}
dfs(ch[u][0],k);
dfs(ch[u][1],k);
int lc=ch[u][0],rc=ch[u][1];
psc.clear();
int j=-1;
for(auto it:S[lc]){
while(j+1<S[rc].size() and S[rc][j+1].a+it.b+val[u][1]+val[u][0]<=k){
++j;
}
if(j>=S[rc].size() ) continue;
if(S[rc][j].a+it.b+val[u][1]+val[u][0]>k) continue;
psc.push_back({it.a+val[u][0],S[rc][j].b+val[u][1]});
}
j=-1;
for(auto it:S[rc]){
while(j+1<S[lc].size() and S[lc][j+1].a+it.b+val[u][1]+val[u][0]<=k){
++j;
}
if(j>=S[lc].size() ) continue;
if(S[lc][j].a+it.b+val[u][1]+val[u][0]>k) continue;
psc.push_back({it.a+val[u][1],S[lc][j].b+val[u][0]});
}
int sz=psc.size();
std::sort(psc.begin(),psc.end(),[](node x,node y){
return x.a<y.a;
});
for(int i=0;i<sz;++i){
if(i!=0){
if(psc[i-1].b<=psc[i].b){
continue;
}
}
S[u].push_back(psc[i]);
}
}
inline bool check(int u,ll k){
dfs(1,k);
return S[1].size();
}
int main(){
filein(a);fileot(a);
read(n);
for(int u=2;u<=n;++u){
int f,w; read(f,w);
if(!ch[f][0]) ch[f][0]=u,val[f][0]=w;
else ch[f][1]=u,val[f][1]=w;
}
ll l=0,r=1ll*(1ll<<17)*(1ll<<17),hf=r;
while(l<=r){
ll mid=(l+r)>>1;
if(check(1,mid) ){
r=mid-1;hf=mid;
}else{
l=mid+1;
}
}
printf("%lld\n",hf);
return 0;
}

AGC007E Shik and Travel 解题报告的更多相关文章

  1. [JZOJ 5911] [NOIP2018模拟10.18] Travel 解题报告 (期望+树形DP)

    题目链接: http://172.16.0.132/senior/#contest/show/2530/1 题目: EZ同学家里非常富有,但又极其的谦虚,说话又好听,是个不可多得的人才.        ...

  2. codeforces 466A. Cheap Travel 解题报告

    题目链接:http://codeforces.com/problemset/problem/466/A 题目意思:一个 ride 需要 a 卢布,m 个 ride 需要 b 卢布,这两种方案都可以无限 ...

  3. [jzoj 5177] [NOIP2017提高组模拟6.28] TRAVEL 解题报告 (二分)

    题目链接: https://jzoj.net/senior/#main/show/5177 题目: 题解: 首先选出的泡泡怪一定是连续的一段 L,R 然后 L 一定属于虫洞左边界中的某一个 R 也同样 ...

  4. [AGC007E] Shik and Travel

    题目 给定一棵n节点的 以1为根的 满二叉树 (每个非叶子节点恰好有两个儿子)n−1 条边. 第ii条边连接 i+1号点 和 ai, 经过代价为vi设这棵树有m个叶子节点定义一次合法的旅行为:(1) ...

  5. AtCoder AGC007E Shik and Travel (二分、DP、启发式合并)

    题目链接 https://atcoder.jp/contests/agc007/tasks/agc007_e 题解 首先有个很朴素的想法是,二分答案\(mid\)后使用可行性DP, 设\(dp[u][ ...

  6. 【LeetCode】Gas Station 解题报告

    [LeetCode]Gas Station 解题报告 标签(空格分隔): LeetCode 题目地址:https://leetcode.com/problems/gas-station/#/descr ...

  7. 【LeetCode】743. Network Delay Time 解题报告(Python)

    [LeetCode]743. Network Delay Time 解题报告(Python) 标签(空格分隔): LeetCode 作者: 负雪明烛 id: fuxuemingzhu 个人博客: ht ...

  8. CH Round #56 - 国庆节欢乐赛解题报告

    最近CH上的比赛很多,在此会全部写出解题报告,与大家交流一下解题方法与技巧. T1 魔幻森林 描述 Cortana来到了一片魔幻森林,这片森林可以被视作一个N*M的矩阵,矩阵中的每个位置上都长着一棵树 ...

  9. 二模13day1解题报告

    二模13day1解题报告 T1.发射站(station) N个发射站,每个发射站有高度hi,发射信号强度vi,每个发射站的信号只会被左和右第一个比他高的收到.现在求收到信号最强的发射站. 我用了时间复 ...

随机推荐

  1. 记住用户名和登录密码+虚拟机没有root权限解决办法

    今日所学: 记住用户名和登录密码 用adb查看保存文件内容 如何使用adb 如何安装adb-百度经验 遇到的问题: 用adb查看文件时,没有权限访问data文件 出现原因:google play虚拟机 ...

  2. CCF201503-1图像旋转

    问题描述 旋转是图像处理的基本操作,在这个问题中,你需要将一个图像逆时针旋转90度. 计算机中的图像表示可以用一个矩阵来表示,为了旋转一个图像,只需要将对应的矩阵旋转即可. 输入格式 输入的第一行包含 ...

  3. C2678 二进制“<”: 没有找到接受“const ***”类型的左操作数的运算符解决办法

    正确代码如下:#include<iostream> #include<string> #include<map> using namespace std; /*仿函 ...

  4. js判断是否为电话号码

    /* 用途:检查输入字符串是否符合国内固话或者传真格式 输入: s:字符串  格式例如:030-4557777返回: 如果通过验证返回true,否则返回false */ function isTel( ...

  5. 静态变量和成员变量的区别、final修饰特点、创建对象的内存图、静态内存图

    静态变量和成员变量的区别* 静态变量也叫类变量  成员变量也叫对象变量* A:所属不同 * 静态变量属于类,所以也称为为类变量 * 成员变量属于对象,所以也称为实例变量(对象变量)* B:内存中位置不 ...

  6. SpringMVC获取请求参数-集合类型

    1.创建User实体类 ```java public class User { private String username; private int age; public String getU ...

  7. Java基础语法01——变量与运算符

    本文是对Java基础语法的第一部分的学习,包括注释:标识符的命名规则与规范:变量的数据类型分类以及转换:以及六种运算符(算术.赋值.比较.逻辑.三元和位运算符).

  8. &&与&,||与| 区别

    1. &&和&都是表示与,区别是&&只要第一个条件不满足,后面条件就不再判断. 而&要对所有的条件都进行判断. public class Test { ...

  9. 从乘法求导法则到BPTT算法

    本文为手稿,旨在搞清楚为什么BPTT算法会多路反向求导,而不是一个感性的认识. 假设我们要对E3求导(上图中的L3),那么则有: 所以S2是W的函数,也就是说,我们不能说: 因为WS2 = WS2(w ...

  10. JS加载不出来 必须alert才可以 alert另一种功能

    BEGIN; 今天在引入百度编辑器时,发现百度编辑器加载不出来. 代码是这样的: var editor = new baidu.editor.ui.Editor({    textarea: 'con ...