卡特兰数经典 \(\texttt{AB}\) 分拆问题。

分析:

题意相当于排列 \(n\) 个 \(\texttt A\) 和 \(n\) 个 \(\texttt B\),使得相邻 \(\texttt{AB}\)(有序!)消掉,然后左右元素并到一起再消,最后消完的序列个数。

设 \(\texttt{AB}\) 为一个组“1”,\(\texttt{AB}\) 自嵌套一次为一个组“2”(即 \(\texttt{AABB}\)),以此类推。

后面大多数数字指组“数字”

题意即转换为一个数 \(n\),求 \(n\) 分解成若干个正整数之和的方案数。

神犇到这一步就可以切掉了吧。

我们这里考虑隔板法:

两个 \(1\) 当然可以合并 \(2\)(\(=1+1\)),\(a\) 和 \(b\) 当然可以合并 \(a+b\),问题转换为有 \(n\) 个 \(1\) 有多少种合并方案。

设 \(n\) 个数的方案数为 \(f(n)\)。

考虑将 \(f(n)\) 分解为 \(f(x_0+y_0)\)。

使用隔板:

  • 当隔板在最左侧时,\(x_0=0\),\(f(0)=1\);\(y_0=n\),因为要求合并,所以有 \(n-1\) 种,由乘法原理知,此步答案为 \(f(0)f(n-1)\)。
  • 隔板向右移动一格,\(x_0=1\),也就是 \(f(1)\);\(y_0=n-1\),同理是 \(n-2\) 种,由乘法原理知,此步答案为 \(f(1)f(n-2)\)。
  • \(\dots\)
  • 归纳一下,第 \(i\) 步为 \(f(i)f(n-i-1)\)。
  • 最后一步显然是 \(f(n-1)f(0)\);左右对称。

于是得出递推式:

\[f(n)=f(0)f(n-1)+f(1)f(n-2)+f(2)f(n-3)+\dots+f(i)f(n-i-1)+\dots+f(n-1)f(0)
\]

朴素 dp 即可:

#include<iostream>
using namespace std;
const int N=25;
typedef long long ll;
ll n,dp[N];
int main()
{
cin>>n;
dp[0]=1;
for (int i=1;i<=n;i++)
for (int j=1;j<=n;j++)
dp[i]+=dp[j-1]*dp[i-j];
cout<<dp[n];
return 0;
}

但是在深入一步,会发现 \(f(n)=f(0)f(n-1)+f(1)f(n-2)+f(2)f(n-3)+\dots+f(i)f(n-i-1)+\dots+f(n-1)f(0)\) 的这个 \(f(n)\) 正好就是卡特兰数 \(C_n\),这个公式正好是一个卡特兰数的递推式。

【洛谷P1754 球迷购票问题】题解的更多相关文章

  1. 洛谷 P1754 球迷购票问题

    P1754 球迷购票问题 题目背景 盛况空前的足球赛即将举行.球赛门票售票处排起了球迷购票长龙. 按售票处规定,每位购票者限购一张门票,且每张票售价为50元.在排成长龙的球迷中有N个人手持面值50元的 ...

  2. 洛谷——P1754 球迷购票问题

    题目背景 盛况空前的足球赛即将举行.球赛门票售票处排起了球迷购票长龙. 按售票处规定,每位购票者限购一张门票,且每张票售价为50元.在排成长龙的球迷中有N个人手持面值50元的钱币,另有N个人手持面值1 ...

  3. 洛谷P1783 海滩防御 分析+题解代码

    洛谷P1783 海滩防御 分析+题解代码 题目描述: WLP同学最近迷上了一款网络联机对战游戏(终于知道为毛JOHNKRAM每天刷洛谷效率那么低了),但是他却为了这个游戏很苦恼,因为他在海边的造船厂和 ...

  4. 洛谷P4047 [JSOI2010]部落划分题解

    洛谷P4047 [JSOI2010]部落划分题解 题目描述 聪聪研究发现,荒岛野人总是过着群居的生活,但是,并不是整个荒岛上的所有野人都属于同一个部落,野人们总是拉帮结派形成属于自己的部落,不同的部落 ...

  5. 洛谷P1155 双栈排序题解(图论模型转换+二分图染色+栈)

    洛谷P1155 双栈排序题解(图论模型转换+二分图染色+栈) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1311990 原题地址:洛谷P1155 双栈排序 ...

  6. 【洛谷】P1754 球迷购票问题(基础dp)

    题目背景 盛况空前的足球赛即将举行.球赛门票售票处排起了球迷购票长龙. 按售票处规定,每位购票者限购一张门票,且每张票售价为50元.在排成长龙的球迷中有N个人手持面值50元的钱币,另有N个人手持面值1 ...

  7. 洛谷10月月赛II题解

    [咻咻咻] (https://www.luogu.org/contestnew/show/11616) 令人窒息的洛谷月赛,即将参加NOIp的我竟然只会一道题(也可以说一道也不会),最终145的我只能 ...

  8. [洛谷P1823]音乐会的等待 题解(单调栈)

    [洛谷P1823]音乐会的等待 Description N个人正在排队进入一个音乐会.人们等得很无聊,于是他们开始转来转去,想在队伍里寻找自己的熟人.队列中任意两个人A和B,如果他们是相邻或他们之间没 ...

  9. BZOJ2527 & 洛谷3527:[Poi2011]Meteors——题解

    +++++++++++++++++++++++++++++++++++++++++++ +本文作者:luyouqi233. + +欢迎访问我的博客:http://www.cnblogs.com/luy ...

随机推荐

  1. 国产化设备鲲鹏CentOS7上源码安装Python3.7

    具体编译过成与正常的Python源代码在x86平台上的过程无异,此篇随笔仅当用作复制黏贴的备忘录.不得不说在一个老旧系统上安装一个老旧的Python版本,从头编译一个Python还是一个较为稳健的选择 ...

  2. opencv学习之边缘检测

    边缘检测 是图像处理 过程中经常会涉及到的一个环节.而在计算机视觉 和 机器学习领域,边缘检测 用于 特征提取 和 特征检测 效果也是特别明显.而 openCV 中进行边缘检测的 算法 真是五花八门, ...

  3. SM3和Blake

    在此给出SM3和Blake的对比 哈希函数 哈希算法 (Hash Algorithm) 是将任意长度的数据映射为固定长度数据的算法,也称为消息摘要.一般情况下,哈希算法有两个特点, 一是原始数据的细微 ...

  4. 使用 VS Code + Markdown 编写 PDF 文档

    背景介绍 作为一个技术人员,基本都需要编写技术相关文档,而且大部分技术人员都应该掌握 markdown 这个技能,使用 markdown 来编写并生成 PDF 文档将会是一个不错的体验,以下就介绍下如 ...

  5. spring 配置文件 --bean

    bean标配的基本配置        id:Bean实例在Spring容器中的唯一标识        class Bean的全限定名        scope            1.当scope的 ...

  6. mysql外键与表查询

    目录 自增特性 外键 外键关系 外键创建 外键的约束效果 级联更新级联删除 多对多关系 一对一关系 表查询关键字 select与from where筛选 group by分组 练习 关系练习 查询练习 ...

  7. python之装饰器补充与递归函数与二分查找

    目录 多层装饰器 有参装饰器 递归函数 基本演示 斐波那契数列 总结 小拓展 算法之二分法 简介 举例 总结 多层装饰器 我们已经知道了语法糖的作用是将装饰对象自动装饰到装饰器中,一个语法糖的应用我们 ...

  8. curl-URL请求

    模拟HTTP请求,通过访问URL获取HTTP响应. 语法 curl [选项] 访问URL 选项 --connect-timeout SECONDS 设置最大请求时间. -C, --continue-a ...

  9. .net6.0 初探

    概述:大概的了解一下 dotnet 6.0 建立 MVC web项目的过程以及程序调用  结合 EF 框架进行简单 的CRUD 1.选择创建  MVC 的Web项目 2.框架类型选择 6.0 3. 6 ...

  10. 基于.NetCore开发博客项目 StarBlog - (11) 实现访问统计

    系列文章 基于.NetCore开发博客项目 StarBlog - (1) 为什么需要自己写一个博客? 基于.NetCore开发博客项目 StarBlog - (2) 环境准备和创建项目 基于.NetC ...