只要你懂 Python,大概记得高中学过的求导知识,看完这个视频你还不理解反向传播和神经网络核心要点的话,那我就吃鞋:D

Andrej Karpathy,前特斯拉 AI 高级总监、曾设计并担任斯坦福深度学习课程 CS231n 讲师、OpenAI 创始成员和研究科学家。在 7 月离职特斯拉后,Andrej 在家录制了一个详解反向传播的课程,自信表示“这是 8 年来领域内对神经网络和反向传播的最佳讲解”,并在推特打赌“看不懂就吃鞋”。

虽然很想看 Andrej 直播吃鞋,但实话实说,作为小白的我,好像真的看懂了。

课程视频

【中英字幕】Andrej Karpathy | 详解神经网络和反向传播(基于micrograd)

字幕由矩池云翻译制作

课程介绍

课程时长 2 小时 25 分钟,基于 micrograd 详细介绍并演示了神经网络的搭建和反向传播的过程。Micrograd 是 Andrej 于 2020 年编写并开源的微型 autograd(自动梯度)引擎。其中用 100 行代码实现了针对动态构建的 DAG 的反向传播算法,并用 50 行代码实现了类 PyTorch API 的库。目前,micrograd 项目的 GitHub Star 量已达 2.6k。

基于 micrograd,Andrej 介绍了只有一个输入的简单函数的求导(y = 3x² - 4x + 5 这个函数中,求 y 对 x 的导数)和具有多个输入的简单函数的求导(已知3个输入a、b、c,并且 d = a * b + c,求d分别对a、b、c的导数)、启动 micrograd 的核心 Value 对象及其可视化的方法,并举了两个手动反向传播的例子。接下来 Andrej 系统地介绍了:

为单个运算实现反向传播;

为整个表达式图实现反向函数;

修复反向传播中一个节点多次使用出现的 bug;

使用更多运算替换 tanh 激活函数;

在 PyTorch 中实现上述运算并与 micrograd 进行比较;

用 micrograd 构建一个神经网络库(MLP);

创建一个微型数据集,编写损失函数;

收集神经网络的所有参数;

手动进行梯度下降优化,训练网络。

最后 Andrej 总结了反向传播与现代神经网络的关系。此外,Andrej 还探究了 PyTorch 中 tanh 激活函数的反向传播机制

课程主讲

Andrej Karpathy 出生于斯洛伐克,15 岁时随家人移民加拿大。在一次采访中,Andrej 表示,“在斯洛伐克的时候并不开心,一直想要离开,当父母表示要移民加拿大的时候,我立马同意了,但家里其他人很犹豫,我就去说服每个人”[3]。

来到加拿大的 Andrej 还不会说英语,但数学成绩非常优秀,完成高中学业后进入多伦多大学计算机科学与物理系并辅修数学,在那里他遇到了 Geoffrey Hinton 教授,也是在 Geoff 的课上,他接触到了深度学习算法。

2009 - 2011 年,Andrej 硕士就读于加拿大不列颠哥伦比亚大学,其导师为计算机科学系教授 Michiel van de Panne,主要研究物理模拟中用于敏捷机器人的机器学习。

CS231n 初露锋芒

2011 年,Andrej 进入斯坦福大学攻读博士学位,师从李飞飞主攻深度学习和图像识别。在斯坦福,他和导师李飞飞一起研究图像识别与深度学习算法,主导设计了斯坦福第一门深度学习课程《CS231n:用于视觉识别的卷积神经网络》,并和李飞飞共同担任主讲人。很快,这门课成为斯坦福的网红课程,注册学生从开课时的150人增加到两年后的750人。

在读博期间,Andrej 发表的多篇论文都是 CV 领域的高引文章,还在 Google、DeepMind 两家公司实习。

他会是全世界最顶级的AI领袖

2016年 Andrej 成为 OpenAI 创始成员,OpenAI 是由马斯克等人创立的非盈利人工智能研究组织,也是在这里,他的天赋被马斯克看中,马斯克不惜得罪 OpenAI 其他成员把 Andrej 从 OpenAI 带到了特斯拉。五年里,Andrej 一手促成了 Autopilot 的开发。随着特斯拉从最开始的自动驾驶慢慢扩展到更广泛的人工智能领域,他也被提为特斯拉的AI高级总监,直接向马斯克汇报工作。

据说马斯克曾说过,很多人把 Andrej 当做优秀的 AI 视觉科学家,但我知道,他会是全世界最顶级的 AI 领袖。

而这位 AI 领袖现在才36岁...

Andrej Karpathy | 详解神经网络和反向传播(基于 micrograd)的更多相关文章

  1. NLP教程(3) | 神经网络与反向传播

    作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www.showmeai.tech/article-det ...

  2. 神经网络之反向传播算法(BP)公式推导(超详细)

    反向传播算法详细推导 反向传播(英语:Backpropagation,缩写为BP)是"误差反向传播"的简称,是一种与最优化方法(如梯度下降法)结合使用的,用来训练人工神经网络的常见 ...

  3. 关于 RNN 循环神经网络的反向传播求导

    关于 RNN 循环神经网络的反向传播求导 本文是对 RNN 循环神经网络中的每一个神经元进行反向传播求导的数学推导过程,下面还使用 PyTorch 对导数公式进行编程求证. RNN 神经网络架构 一个 ...

  4. 使用PyTorch构建神经网络以及反向传播计算

    使用PyTorch构建神经网络以及反向传播计算 前一段时间南京出现了疫情,大概原因是因为境外飞机清洁处理不恰当,导致清理人员感染.话说国外一天不消停,国内就得一直严防死守.沈阳出现了一例感染人员,我在 ...

  5. 深度学习与CV教程(4) | 神经网络与反向传播

    作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/37 本文地址:http://www.showmeai.tech/article-det ...

  6. [AI]神经网络章2 神经网络中反向传播与梯度下降的基本概念

    反向传播和梯度下降这两个词,第一眼看上去似懂非懂,不明觉厉.这两个概念是整个神经网络中的重要组成部分,是和误差函数/损失函数的概念分不开的. 神经网络训练的最基本的思想就是:先“蒙”一个结果,我们叫预 ...

  7. 神经网络中误差反向传播(back propagation)算法的工作原理

    注意:版权所有,转载需注明出处. 神经网络,从大学时候就知道,后面上课的时候老师也讲过,但是感觉从来没有真正掌握,总是似是而非,比较模糊,好像懂,其实并不懂. 在开始推导之前,需要先做一些准备工作,推 ...

  8. 卷积神经网络(CNN)反向传播算法

    在卷积神经网络(CNN)前向传播算法中,我们对CNN的前向传播算法做了总结,基于CNN前向传播算法的基础,我们下面就对CNN的反向传播算法做一个总结.在阅读本文前,建议先研究DNN的反向传播算法:深度 ...

  9. (3)Deep Learning之神经网络和反向传播算法

    往期回顾 在上一篇文章中,我们已经掌握了机器学习的基本套路,对模型.目标函数.优化算法这些概念有了一定程度的理解,而且已经会训练单个的感知器或者线性单元了.在这篇文章中,我们将把这些单独的单元按照一定 ...

随机推荐

  1. NC53681 「土」巨石滚滚

    NC53681 「土」巨石滚滚 题目 题目描述 帕秋莉掌握了一种土属性魔法 她使用这种魔法建造了一个大型的土球,并让其一路向下去冲撞障碍 土球有一个稳定性 \(x\) ,如果 \(x < 0\) ...

  2. LEACH分簇算法实现和能量控制算法实现

    一.前言 1.在给定WSN的节点数目(100)前提下,节点随机分布,按照LEACH算法,实现每一轮对WSN的分簇.记录前K轮(k=10)时,网络的分簇情况,即每个节点的角色(簇头或簇成员).标记节点之 ...

  3. File类的概述和File类的静态成员变量

    File类概述:java.io.File类 文件和目录路径名的抽象表示形式 java把电脑中的文件和文件夹(目录)封账为了一个File类,我们可以使用File类对文件和文件夹进行操作 默认情况下,ja ...

  4. 螣龙安科携手51CTO:网络安全实战课程最新发布

    一年一度的双十一狂欢节即将来临了,相信各大电商平台也正摩拳擦掌跃跃欲试中.回顾2019年,阿里巴巴双十一狂欢节的单日交易额就达到了2684亿人民币,创造了电商交易历史上新的记录. 当人们愉快地购买着自 ...

  5. 开发实践丨昇腾CANN的推理应用开发体验

    摘要:这是关于一次 Ascend 在线实验的记录,主要内容是通过网络模型加载.推理.结果输出的部署全流程展示,从而快速熟悉并掌握 ACL(Ascend Computing Language)基本开发流 ...

  6. CMU15445 (Fall 2019) 之 Project#4 - Logging & Recovery 详解

    前言 这是 Fall 2019 的最后一个实验,要求我们实现预写式日志.系统恢复和存档点功能,这三个功能分别对应三个类 LogManager.LogRecovery 和 CheckpointManag ...

  7. Template -「高斯消元」

    #include <cstdio> #include <vector> #include <algorithm> using namespace std; doub ...

  8. 开源轻量级工作流WorkflowCore介绍

    在.Net Framework环境下,我们使用Windows Workflow Foundation(WF)作为项目的工作流引擎,可是.Net Core已经不支持WF了,需要为基于.Net Core的 ...

  9. AtCoder Beginner Contest 260 F - Find 4-cycle

    题目传送门:F - Find 4-cycle (atcoder.jp) 题意: 给定一个无向图,其包含了S.T两个独立点集(即S.T内部间的任意两点之间不存在边),再给出图中的M条边(S中的点与T中的 ...

  10. Axure RP 8 实现 圆角文本框 圆角带筛选的下拉列表框 可自动显示滚动条

    刚开始用Axure 会发现 Axure 元件库并不是很齐全,很多元件需要自己想办法解决 或者去网上去找.其实个人建议网上有现成的元件可以就下载就不必花时间去折腾.除非你也想练练手,原型这种东西除非高保 ...