Flink SQL 子图复用逻辑分析
子图复用优化是为了找到SQL执行计划中重复的节点,将其复用,避免这部分重复计算的逻辑。先回顾SQL执行的主要流程 parser -> validate -> logical optimize -> physical optimize -> translateToExecNode。
而子图复用的逻辑就是在这个阶段进行的
private[flink] def translateToExecNodeGraph(
optimizedRelNodes: Seq[RelNode],
isCompiled: Boolean): ExecNodeGraph = {
val nonPhysicalRel = optimizedRelNodes.filterNot(_.isInstanceOf[FlinkPhysicalRel])
if (nonPhysicalRel.nonEmpty) {
throw new TableException(
"The expected optimized plan is FlinkPhysicalRel plan, " +
s"actual plan is ${nonPhysicalRel.head.getClass.getSimpleName} plan.")
}
require(optimizedRelNodes.forall(_.isInstanceOf[FlinkPhysicalRel]))
// Rewrite same rel object to different rel objects
// in order to get the correct dag (dag reuse is based on object not digest)
val shuttle = new SameRelObjectShuttle()
val relsWithoutSameObj = optimizedRelNodes.map(_.accept(shuttle))
// reuse subplan
val reusedPlan = SubplanReuser.reuseDuplicatedSubplan(relsWithoutSameObj, tableConfig)
// convert FlinkPhysicalRel DAG to ExecNodeGraph
val generator = new ExecNodeGraphGenerator()
val execGraph = generator.generate(reusedPlan.map(_.asInstanceOf[FlinkPhysicalRel]), isCompiled)
// process the graph
val context = new ProcessorContext(this)
val processors = getExecNodeGraphProcessors
processors.foldLeft(execGraph)((graph, processor) => processor.process(graph, context))
}
可以看到这里首先会校验relNodes都是FlinkPhysicalRel 物理执行计划的节点
require(optimizedRelNodes.forall(_.isInstanceOf[FlinkPhysicalRel]))
SameRelObjectShuttle
/**
* Rewrite same rel object to different rel objects.
*
* <p>e.g.
* {{{
* Join Join
* / \ / \
* Filter1 Filter2 => Filter1 Filter2
* \ / | |
* Scan Scan1 Scan2
* }}}
* After rewrote, Scan1 and Scan2 are different object but have same digest.
*/
class SameRelObjectShuttle extends DefaultRelShuttle {
private val visitedNodes = Sets.newIdentityHashSet[RelNode]()
override def visit(node: RelNode): RelNode = {
val visited = !visitedNodes.add(node)
var change = false
val newInputs = node.getInputs.map {
input =>
val newInput = input.accept(this)
change = change || (input ne newInput)
newInput
}
if (change || visited) {
node.copy(node.getTraitSet, newInputs)
} else {
node
}
}
}
然后进行rel节点重写,RelShuttle的作用就是提供visit的模式根据实现的逻辑来替换树中的某些节点。可以看到这个实现中会将 同一个objec(注意这里保存visitedNodes使用的是identity hash set) 第二次访问时 copy成一个新的对象,但是有相同的digest,这一步的目的是什么呢?
我们往下面看在后续生成ExecNode时, 会创建一个IdentityHashMap 来保存访问过的Rels,所以意思就是真正生成ExecNode时,是和Rels对象一一对应的。
private final Map<FlinkPhysicalRel, ExecNode<?>> visitedRels = new IdentityHashMap();
private ExecNode<?> generate(FlinkPhysicalRel rel, boolean isCompiled) {
ExecNode<?> execNode = visitedRels.get(rel);
if (execNode != null) {
return execNode;
}
if (rel instanceof CommonIntermediateTableScan) {
throw new TableException("Intermediate RelNode can't be converted to ExecNode.");
}
List<ExecNode<?>> inputNodes = new ArrayList<>();
for (RelNode input : rel.getInputs()) {
inputNodes.add(generate((FlinkPhysicalRel) input, isCompiled));
}
execNode = rel.translateToExecNode(isCompiled);
// connects the input nodes
List<ExecEdge> inputEdges = new ArrayList<>(inputNodes.size());
for (ExecNode<?> inputNode : inputNodes) {
inputEdges.add(ExecEdge.builder().source(inputNode).target(execNode).build());
}
execNode.setInputEdges(inputEdges);
visitedRels.put(rel, execNode);
return execNode;
}
看到这里上面将同一个object 拆成两个的目的就更不可理解了,因为本来是一个object的话在这里天然就复用了,但是拆成2个反而就不能复用了。
这里的目的是先将相同的object被重复引用的节点拆开,然后再根据digest相同以及内部规则来决定是否复用。这样就可以有Flink引擎来控制哪些节点是可以合并的。
SubplanReuseContext
在context中通过ReusableSubplanVisitor构造两组映射关系
// mapping a relNode to its digest
private val mapRelToDigest = Maps.newIdentityHashMap[RelNode, String]()
// mapping the digest to RelNodes
private val mapDigestToReusableNodes = new util.HashMap[String, util.List[RelNode]]()
中间的逻辑比较简单就是遍历整棵树,查找是否存在可reusable的节点,怎么判断可reusable呢?
- 同一digest下,挂了多个RelNode节点,那么这一组RelNode是同一语义的,是可以复用的候选
- 节点没有disable reusable
/** Returns true if the given node is reusable disabled */
private def isNodeReusableDisabled(node: RelNode): Boolean = {
node match {
// TableSourceScan node can not be reused if reuse TableSource disabled
case _: FlinkLogicalLegacyTableSourceScan | _: CommonPhysicalLegacyTableSourceScan |
_: FlinkLogicalTableSourceScan | _: CommonPhysicalTableSourceScan =>
!tableSourceReuseEnabled
// Exchange node can not be reused if its input is reusable disabled
case e: Exchange => isNodeReusableDisabled(e.getInput)
// TableFunctionScan and sink can not be reused
case _: TableFunctionScan | _: LegacySink | _: Sink => true
case _ => false
}
}
例如TableFunctionScan就不能被Reuse(这个原因还没理解),或者exchange只有input被reuse时,该节点才能复用
SubplanReuseShuttle
在以上的visit执行完之后以及知道哪些节点是可以复用的了,最后通过一个Shuttle来将可复用的节点进行替换
class SubplanReuseShuttle(context: SubplanReuseContext) extends DefaultRelShuttle {
private val mapDigestToNewNode = new util.HashMap[String, RelNode]()
override def visit(rel: RelNode): RelNode = {
val canReuseOtherNode = context.reuseOtherNode(rel)
val digest = context.getRelDigest(rel)
if (canReuseOtherNode) {
val newNode = mapDigestToNewNode.get(digest)
if (newNode == null) {
throw new TableException("This should not happen")
}
newNode
} else {
val newNode = visitInputs(rel)
mapDigestToNewNode.put(digest, newNode)
newNode
}
}
}
实现的方式就是记录每个digest对应的newNode,当可以复用时,那么直接返回该复用digest对应的RelNode(替换了原先的digest相同,对象不同的RelNode),这样整棵树中可复用的节点又重新合并了。
Flink SQL 子图复用逻辑分析的更多相关文章
- [源码分析] 带你梳理 Flink SQL / Table API内部执行流程
[源码分析] 带你梳理 Flink SQL / Table API内部执行流程 目录 [源码分析] 带你梳理 Flink SQL / Table API内部执行流程 0x00 摘要 0x01 Apac ...
- 从"UDF不应有状态" 切入来剖析Flink SQL代码生成
从"UDF不应有状态" 切入来剖析Flink SQL代码生成 目录 从"UDF不应有状态" 切入来剖析Flink SQL代码生成 0x00 摘要 0x01 概述 ...
- [源码分析]从"UDF不应有状态" 切入来剖析Flink SQL代码生成 (修订版)
[源码分析]从"UDF不应有状态" 切入来剖析Flink SQL代码生成 (修订版) 目录 [源码分析]从"UDF不应有状态" 切入来剖析Flink SQL代码 ...
- KSQL和Flink SQL的比较
Confluent公司于2017年11月宣布KSQL进化到1.0版本,标志着KSQL已经可以被正式用于生产环境.自那时起,整个Kafka发展的重心都偏向于KSQL——这一点可以从Confluent官方 ...
- MyBatis 别名标签 & sql的复用
1.MyBatis 别名标签 如果在映射文件中,大量使用类名比较长,可以在sqlMapConfig.xml声明别名, 在映射文件中可以使用别名缩短配置,注意此配置要放在最前面 sqlMapConfig ...
- Flink SQL与 SQL Parser ,calcite
http://vinoyang.com/2017/06/12/flink-table-sql-source/ Flink Table&Sql 如何结合Apache Calcite http:/ ...
- 使用flink Table &Sql api来构建批量和流式应用(3)Flink Sql 使用
从flink的官方文档,我们知道flink的编程模型分为四层,sql层是最高层的api,Table api是中间层,DataStream/DataSet Api 是核心,stateful Stream ...
- Apache Flink SQL
本篇核心目标是让大家概要了解一个完整的 Apache Flink SQL Job 的组成部分,以及 Apache Flink SQL 所提供的核心算子的语义,最后会应用 TumbleWindow 编写 ...
- OPPO数据中台之基石:基于Flink SQL构建实数据仓库
小结: 1. OPPO数据中台之基石:基于Flink SQL构建实数据仓库 https://mp.weixin.qq.com/s/JsoMgIW6bKEFDGvq_KI6hg 作者 | 张俊编辑 | ...
随机推荐
- python小题目练习(十)
题目:根据生日判断星座 需求:实现如下图所示结果 代码展示: """Author:mllContent:根据生日判断星座Date:2020-11-23"&quo ...
- MySql查看索引以及各字段含义
查看表的索引: show index from userInfo(表名) show index from 数据库名.表名 查看某表某一列上的索引使用下面的SQL语句: show index from ...
- ShardingSphere-proxy-5.0.0企业级分库分表、读写分离、负载均衡、雪花算法、取模算法整合(八)
一.简要说明 以下配置实现了: 1.分库分表 2.每一个分库的读写分离 3.读库负载均衡算法 4.雪花算法,生成唯一id 5.字段取模 二.配置项 # # Licensed to the Apache ...
- JAVA中计算两个日期时间的差值竟然也有这么多门道
上半年春招的时候,作为面试官,对于面试表现的不错的同学会要求其写一小段代码看看.题目很简单: 给定一个日期,然后计算下距离今天相差的天数. 本以为这么个问题就是用来活跃面试氛围的,但是结果却让人大跌眼 ...
- go-zero微服务实战系列(十一、大结局)
本篇是整个系列的最后一篇了,本来打算在系列的最后一两篇写一下关于k8s部署相关的内容,在构思的过程中觉得自己对k8s知识的掌握还很不足,在自己没有理解掌握的前提下我觉得也很难写出自己满意的文章,大家看 ...
- @RequestBody,@RequestParam是否能随意改变入参字母大小写
在工作中遇到了一个问题,很多接口有的入参是companyName,有的入参是companyname,实际上,这两入参能任意适配所有接口,甚至随意改变大小写! 1. @RequestBody是完全按照驼 ...
- XML入门介绍
目录 XML 简介 xml 语法 文档声明 (1)创建一个 xml 文件 (2)图书有 id 性 属性 一 表示唯一 标识,书名,有作者,价格的信息 xml 注释 元素(标签) 1)什么是 xml 元 ...
- 如何用 身份证OCR 接口进行快速开发
最近公司项目有一个身份证文字识别的小需求,想着如果用现成的API就可以大大提高开发效率,在网上的API商店搜索了一番,发现了 APISpace,它里面的身份证OCR非常符合我的开发需求. 身份证O ...
- 【干货】MySQL底层架构设计,你了解多少?
很多开发同学对SQL优化如数家珍,却对MySQL架构一知半解.岂不是只见树叶,不见森林,终将陷入细节中不能自拔. 今天就一块学习MySQL分层架构,深入了解MySQL底层实现原理,以及每层的作用,我们 ...
- Solution -「CF1373G」Pawns
小清新线段树题(( 每个位置的边只能向靠右的三个方向走,最后要走到一条基准线上.即对于一个点 \((x, y)\),它最后应该落在 \((k, y + |k - x|)\). 士兵可以一个一个进行移动 ...