文章转载自:https://elasticstack.blog.csdn.net/article/details/112259500

日志记录实际上是每个应用程序都必须具备的功能。无论你选择基于哪种技术,都需要监视应用程序的运行状况和操作。随着应用程序扩展,这变得越来越困难,你需要查看不同的文件,文件夹甚至服务器来查找所需的信息。虽然你可以使用内置功能从应用程序本身编写 Python 日志,但应将这些日志集中在 Elastic Stack 之类的工具中。

借助 Elasticsearch 筛选大量数据的效率,应用程序开发人员可以快速缩小最重要的日志的范围。仪表板可发送给运营团队,使他们能够在检测到异常行为时迅速做出反应。

本文将重点介绍为Python应用程序构建健壮的应用程序日志记录基础结构。 Python 是一种非常流行且易于使用的通用编程语言。从学习到编程,再到实施复杂的机器学习解决方案,这是各种活动的绝佳选择。

在我之前的文章 “Beats: 使用 Filebeat 进行日志结构化 - Python”,我使用了另外一种方法来记录 Python 日志。

Python 日志概述

Python 随附了一个非常灵活且易于使用的日志记录模块。 与许多日志记录库一样,Python 可以在多个级别进行日志记录(例如,INFO 或 ERROR),以各种方式格式化日志输出,并写入不同的目标位置(例如,控制台或文件)。 实际上,将某些内容记录到文件中很简单:

main.py

import logging

logging.basicConfig(filename="app.log", level=logging.DEBUG)

logging.info('Application running!')

当我们运行上面的 Python 应用后,就会在应用当前的目录里生成一个叫做 app.log 的文件:

app.log

INFO:root:Application running!

当你向日志中添加更多信息时,有必要以人类可读和机器可解析的格式编写日志。 这称为结构化日志记录。 JSON结构的日志特别容易传送到 Elastic Stack 中。

将 JSON 格式的日志结构化过程与 Python 的日志记录模块集成在一起很容易,该模块提供了处理程序和格式化程序,以分离处理输出目标和格式化日志本身的问题。 通过这种分离,你可以自定义日志从应用程序代码到其目的地的旅程的任何部分。 实际上,python-json-logger 是一个免费的 Python JSON 记录器。 要进行设置,请先通过 pip 安装它:

pip install python-json-logger

或者针对 Python3 的安装:

pip3 install python-json-logger

接下来,你可以使用具有以下结构的配置文件 logging.conf 来设置 JSON 日志记录。这个文件可以放置于项目的当前目录中:

logging.conf

[loggers]
keys = root [logger_root]
level = INFO
handlers = root [handlers]
keys = root [handler_root]
class = FileHandler
level = INFO
formatter = json
args = ('application.log',) [formatters]
keys = json [formatter_json]
class = __main__.ElkJsonFormatter

最后,以下代码允许你编写 JSON 日志:

main.py

import logging
import logging.config
from pythonjsonlogger import jsonlogger
from datetime import datetime; class ElkJsonFormatter(jsonlogger.JsonFormatter):
def add_fields(self, log_record, record, message_dict):
super(ElkJsonFormatter, self).add_fields(log_record, record, message_dict)
now = datetime.utcnow().strftime('%Y-%m-%dT%H:%M:%S.%fZ')
log_record['@timestamp'] = now
log_record['level'] = record.levelname
log_record['logger'] = record.name logging.config.fileConfig('logging.conf')
logger = logging.getLogger("MainLogger") logging.info('Application running!')

此代码加载之前在 logging.config 配置中定义的 ElkJsonFormatter 类。 我们本可以直接使用 JsonFormatte r类(来自 python-json-logger)来生成 JSON 日志。 但是,在这种情况下,我们将设置特定的字段(尤其是 @timestamp),这将使将日志更轻松地发送到 Elasticsearch 产生以下结构:

application.log

{"message": "Application running!", "@timestamp": "2021-01-06T03:39:12.846837Z", "level": "INFO", "logger": "root"}

重新运行我们的应用。我们可以在项目当前目录下发现一个叫做 application.log 的文件。

将 Python 日志传送到 Elastic Stack

一旦我们的日志处于我们可以推理的结构中,就可以将其发送到 Elasticsearch 进行处理并生成我们所需的见解。 当日志为 JSON 格式时,这是最容易设置的,但也可以与其他非 JSON 日志一起使用,只要它们具有足够清晰的结构即可解析。

安装 Elastic Stack

如果你还没有安装好自己的 Elastic Stack,那么请参照我之前的文章 “Elastic:菜鸟上手指南” 安装好自己的 Elasticsearch 以及 Kibana。在我们今天的练习中,我将使用 Filebeat 来把数据导入到 Elastic Stack 中。如果你还没有安装好自己的 Filebeat,请阅读之前的介绍文章:

在上面的两篇文章中,它详述了如何安装 Filebeat。

使用 Filebeat 传送 JSON 日志

由于 Filebeat 天生就具有 JSON 处理器,Filebeat 能够很轻松地将 JSON 日志直接传送到 Elasticsearch 中。 为此,我们只需要创建一个 Filebeat 的配置文件:

filebeat_python_logging.yml

filebeat.inputs:
- type: log
enabled: true
paths:
- /Users/liuxg/python/python_logging/application.log
json:
keys_under_root: true
overwrite_keys: true
message_key: 'message'
add_error_key: true output.elasticsearch:
hosts: ["localhost:9200"]
index: "python_logs" processors:
- decode_json_fields:
fields: ['message']
target: json
- drop_fields:
fields: ["ecs", "agent", "log", "input", "host"] setup.ilm.enabled: false
setup.template.name: python_logs
setup.template.pattern: python_logs

上面的 paths 路径需要依据你自己的 log 路径改变而改变。在上面我定义了一个特定的索引名称 python_logs。在 filebeat 的安装目录中,我们运行如下的命令:

./filebeat -e -c filebeat_python_logging.yml

运行完上面的命令后,我们可以在 Kibana 中使用如下的命令进行查看:

GET _cat/indices
yellow open twitter ztCFdrdbTHuooTkIdaDcjw 1 1 6 0 10.3kb 10.3kb
green open .apm-custom-link p18qhpfTRP6I0xDBjW9Asw 1 0 0 0 208b 208b
green open .kibana_task_manager_1 nvc7Qkt4RdaCaqClux2G1Q 1 0 5 310 403.5kb 403.5kb
yellow open python_logs RihQ0eqIS1ivAtHvC5B_DQ 1 1 1 0 4.5kb 4.5kb
green open .apm-agent-configuration hC534SjHSIKdmyH910AVhA 1 0 0 0 208b 208b
green open kibana_sample_data_logs QtVaJBiLRc-qj_A0pqlzKw 1 0 14074 0 10.4mb 10.4mb
green open .kibana-event-log-7.10.0-000001 16sjjPW9QaKsxGw52Snstw 1 0 3 0 16.4kb 16.4kb
green open .async-search i7qc9VdhTlOvBjAbgYTuKQ 1 0 0 0 228b 228b
green open .kibana_1 VTuPMA6TRr-vLIRqQFh64g 1 0 97 25 10.4mb 10.4mb

我们可以发现一个新生成的 python_logs 文件已经生成了。我们可以通过如下的命令来查看文档的内容:

GET python_logs/_search
{
"took" : 1,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 1,
"relation" : "eq"
},
"max_score" : 1.0,
"hits" : [
{
"_index" : "python_logs",
"_type" : "_doc",
"_id" : "oOTH1XYBli_HPhP3ZESw",
"_score" : 1.0,
"_source" : {
"@timestamp" : "2021-01-06T03:39:12.846Z",
"level" : "INFO",
"logger" : "root",
"message" : "Application running!"
}
}
]
}
}

显然,我们把之前的 application.log 的内容已经成功地导入到 Elasticsearch 之中了。

Beats:使用 Elastic Stack 记录 Python 应用日志的更多相关文章

  1. 使用配置文件方式记录Python程序日志

    开发者可以通过三种方式配置日志记录: 调用配置方法的Python代码显式创建记录器.处理程序和格式化程序. 创建日志配置文件并使用fileConfig() 函数读取. 创建配置信息字典并将其传递给di ...

  2. 优雅地记录Python程序日志2:模块组件化日志记录器

    本文摘自:https://zhuanlan.zhihu.com/p/32043593 本篇将会涉及: logging的各个模块化组件 构建一个组件化的日志器 logging的模块组件化 在上一篇文章中 ...

  3. 优雅地记录Python程序日志1:logging模块简介

    本文摘自:https://zhuanlan.zhihu.com/p/31893724 本篇涉及: logging模块的调用: 保存log日志为文件: 调整输入日志等级: 修改日志消息格式: 前言 在使 ...

  4. Elastic Stack之kibana入门

    为了解决公司的项目在集群环境下查找日志不便的问题,我在做过简单调研后,选用Elastic公司的Elastic Stack产品作为我们的日志收集,存储,分析工具. Elastic Stack是ELK(E ...

  5. ES 集中式日志分析平台 Elastic Stack(介绍)

    一.ELK 介绍 ELK 构建在开源基础之上,让您能够安全可靠地获取任何来源.任何格式的数据,并且能够实时地对数据进行搜索.分析和可视化. 最近查看 ELK 官方网站,发现新一代的日志采集器 File ...

  6. 集中式日志分析平台 Elastic Stack(介绍)

    一.ELK 介绍 二.ELK的几种常见架构 >>ELK 介绍<< ELK 构建在开源基础之上,让您能够安全可靠地获取任何来源.任何格式的数据,并且能够实时地对数据进行搜索.分析 ...

  7. Elastic Stack(ElasticSearch 、 Kibana 和 Logstash) 实现日志的自动采集、搜索和分析

    Elastic Stack 包括 Elasticsearch.Kibana.Beats 和 Logstash(也称为 ELK Stack).能够安全可靠地获取任何来源.任何格式的数据,然后实时地对数据 ...

  8. SpringBoot 整合 Elastic Stack 最新版本(7.14.1)分布式日志解决方案,开源微服务全栈项目【有来商城】的日志落地实践

    一. 前言 日志对于一个程序的重要程度不用过多的言语修饰,本篇将以实战的方式讲述开源微服务全栈项目 有来商城 是如何整合当下主流日志解决方案 ELK +Filebeat . 话不多说,先看实现的效果图 ...

  9. 浅尝 Elastic Stack (一) Elasticsearch、Kibana、Beats 安装

    Elastic Stack 包括 Elasticsearch.Kibana.Beats 和 Logstash,也称为 ELK Stack.能够安全可靠地获取任何来源.任何格式的数据,然后实时地对数据进 ...

随机推荐

  1. 【跟着大佬学JavaScript】之数组去重(结果对比)

    前言 数组去重在面试和工作中都是比较容易见到的问题. 这篇文章主要是来测试多个方法,对下面这个数组的去重结果进行分析讨论.如果有不对的地方,还请大家指出. const arr = [ 1, 1, &q ...

  2. GRPC头测试记录

    GRPC头记录 http://nodejs.cn/api/http2/note_on_authority_and_host.html https://cloud.tencent.com/develop ...

  3. 2550--HashMap源码解析

    JDK版本 1.8 结构: HashMap实现了Map Cloneable Serializable接口: 基础了AbstractMap类,AbstractMap提供一些通用方法,如put remov ...

  4. Linux系列之进程管理

    前言 进程是正在运行的程序,Linux系统通常有数百个进程同时运行.本文就来介绍下Linux是如何进行进程管理的. 我们可以看到: 查看进程(Viewing processes) 查找进程(Findi ...

  5. 安卓手机如何无线连接adb?

    一般情况,大家adb调试手机,都是通过数据线的,但这样又是不太方便,所以我们可以通过WLAN来adb. 我的是华为手机,进入:设置-关于手机,连续点击版本号,唤出开发者模式.然后去返回设置-系统和更新 ...

  6. Java学习 (七)基础篇 变量

    变量 变量顾名思义,就是可以变化的量 Java是一种强类型语言,每个变量都必须声明其类型 Java变量是程序中最基本的存储单位,其要素包括变量名.变量类型和作用域 type varName [=val ...

  7. 万答#18,MySQL8.0 如何快速回收膨胀的UNDO表空间

    欢迎来到 GreatSQL社区分享的MySQL技术文章,如有疑问或想学习的内容,可以在下方评论区留言,看到后会进行解答 GreatSQL社区原创内容未经授权不得随意使用,转载请联系小编并注明来源. 背 ...

  8. 通过重新构建Kubernetes来实现更具弹性的容器编排系统

    通过重新构建Kubernetes来实现更具弹性的容器编排系统 译自:rearchitecting-kubernetes-for-the-edge 摘要 近年来,kubernetes已经发展为容器编排的 ...

  9. (防坑)Alphafold 非docker 安装指南

    本指南适用于Linux系统.Alphafold官方也强调尽量使用Linux系统!官方提供了docker版安装步骤. Alphafold简介: 强大的蛋白质结构预测. 开源地址:https://gith ...

  10. Web 前端实战:雷达图

    前言 在Canvas 线性图形(五):多边形实现了绘制多边形的函数.本篇文章将记录如何绘制雷达图.最终实现的效果是这样的: 绘制雷达图 雷达图里外层 如动图中所示,雷达图从里到外一共有 6 层,所以, ...