Codeforces 401D Roman and Numbers
题目大意
Description
给定一个数 N(N<1018) , 求有多少个经过 N 重组的数是 M(M≤100) 的倍数.
注意: ①重组不能有前导零; ②重组的数相同, 则只能算一个数.
Input
第一行两个数 N , M .
Output
输出满足要求的数的个数.
Sample Input
223 4
Sample Output
1
题解
状压DP.
\(f[i][j]\)中, \(i\)是状态, 表示原数中哪些位已经被新数占用. 因此, 一个Naive的想法就是对于新数的每一位, 进行一次DP, 时间复杂度: \(2^{18} \times 18 \times 18\), 显然会TLE.
我们注意到, 每当我们进行一次转移, 也就是在新数中填入一位的时候, 状态\(i\)都只会变小, 因此我们从\(2^{18} - 1\)往下直接进行一次DP即可. 时间复杂度: \(2^{18} * 18\), 尚可接受.
#include <cstdio>
#include <cstring>
const int LEN = 18, M = 100;
int main()
{
#ifndef ONLINE_JUDGE
freopen("CF401D.in", "r", stdin);
#endif
static long long pw[LEN];
pw[0] = 1;
for(int i = 1; i < LEN; ++ i)
pw[i] = pw[i - 1] * 10;
long long n, m;
scanf("%lld%lld\n", &n, &m);
int len = 0;
long long tmp = n;
static int cnt[10];
for(; tmp; tmp /= 10, ++ len)
++ cnt[tmp % 10];
static long long fac[10];
for(int i = 0; i < 10; ++ i)
{
fac[i] = 1;
for(int j = 1; j <= cnt[i]; ++ j)
fac[i] *= j;
}
static long long f[1 << LEN][M];
memset(f, 0, sizeof(f));
f[(1 << len) - 1][0] = 1;
/*
for(int l = len - 1; ~ l; -- l)
for(long long i = 0; i < 1 << len; ++ i)
for(int j = 0; j < m; ++ j)
if(f[i][j])
{
for(int k = 0; k < len; ++ k)
{
if(n / pw[k] % 10 == 0 && l == len - 1)
continue;
if(i >> k & 1)
f[i ^ (1 << k)][(j + n / pw[k] % 10 * pw[l]) % m] += f[i][j];
}
f[i][j] = 0;
} */
for(int i = (1 << len) - 1; ~ i; -- i)
for(int j = 0; j < len; ++ j)
if(i >> j & 1 && (i ^ (1 << len) - 1 || n / pw[j] % 10 % 10))
for(int k = 0; k < m; ++ k)
f[i ^ (1 << j)][(k * 10 + n / pw[j] % 10) % m] += f[i][k];
long long ans = f[0][0];
for(int i = 0; i < 10; ++ i)
ans /= fac[i];
printf("%lld\n", ans);
}
Codeforces 401D Roman and Numbers的更多相关文章
- codeforces 401D. Roman and Numbers 数位dp
题目链接 给出一个<1e18的数, 求将他的各个位的数字交换后, 能整除m的数的个数. 用状态压缩记录哪个位置的数字已经被使用了, 具体看代码. #include<bits/stdc++. ...
- Codeforces Round #235 (Div. 2) D. Roman and Numbers 状压dp+数位dp
题目链接: http://codeforces.com/problemset/problem/401/D D. Roman and Numbers time limit per test4 secon ...
- Codeforces Round #235 (Div. 2) D. Roman and Numbers (数位dp、状态压缩)
D. Roman and Numbers time limit per test 4 seconds memory limit per test 512 megabytes input standar ...
- Codeforces Round #235 (Div. 2) D. Roman and Numbers(如压力dp)
Roman and Numbers time limit per test 4 seconds memory limit per test 512 megabytes input standard i ...
- [codeforces 55]D. Beautiful numbers
[codeforces 55]D. Beautiful numbers 试题描述 Volodya is an odd boy and his taste is strange as well. It ...
- 题解-Roman and Numbers
题解-Roman and Numbers 前置知识: 数位 \(\texttt{dp}\) </> \(\color{#9933cc}{\texttt{Roman and Numbers} ...
- CF401D Roman and Numbers 状压DP
CF401D 题意翻译 将n(n<=10^18)的各位数字重新排列(不允许有前导零) 求 可以构造几个mod m等于0的数字 题目描述 Roman is a young mathematicia ...
- CodeForces - 1245A Good ol' Numbers Coloring (思维)
Codeforces Round #597 (Div. 2 Consider the set of all nonnegative integers: 0,1,2,-. Given two integ ...
- CodeForces 682A Alyona and Numbers (水题)
Alyona and Numbers 题目链接: http://acm.hust.edu.cn/vjudge/contest/121333#problem/A Description After fi ...
随机推荐
- PAT Basic 1075
1075 链表元素分类 给定一个单链表,请编写程序将链表元素进行分类排列,使得所有负值元素都排在非负值元素的前面,而 [0, K] 区间内的元素都排在大于 K 的元素前面.但每一类内部元素的顺序是不能 ...
- HTTP认证之基本认证——Basic(一)
导航 HTTP认证之基本认证--Basic(一) HTTP认证之基本认证--Basic(二) HTTP认证之摘要认证--Digest(一) HTTP认证之摘要认证--Digest(二) 一.概述 Ba ...
- SSM网上商城项目 01
开发环境与技术选型 操作系统:win7 IDE:Eclipse neno JDK:1.8 数据库:mysql5.6 Dao层:mybatis.数据库连接池(德鲁伊druid) 缓存:redis3.0. ...
- loadrunner参数化数据分配方法
数据分配方法: 在“Select next row“列表中选择一个数据分配方法,以指示在Vuser脚本执行期间如何从参数文件中取得数据.选项包括”Sequential“.“Random”.“Uniqu ...
- day05_03 字符串格式化
pycharm小技巧,一般情况下都需要在代码前注释以下作者以及创建日期 但是如何让软件默认生成呢? 格式化输出 可以用占位符 %s string的缩写 #__author:Administra ...
- Learning Deconvolution Network for Semantic Segme小结
题目:Learning Deconvolution Network for Semantic Segmentation 作者:Hyeonwoo Noh, Seunghoon Hong, Bohyung ...
- operator的各种问题
a+b = a^b + (a&b)<<1 用位运算实现两数相加 int Add(int a,int b) { return b?Add(a^b,(a&b)<<1 ...
- javascript学习笔记 - 引用类型 RegExp
四 RegExp 格式: var expression = / pattern / flags; 1.flags 为标志.分别为g.i.m. g:表示全局模式.即模式将匹配所有的字符串,而不是在发现第 ...
- 九度oj 题目1084:整数拆分 清华大学2010年机试题目
题目描述: 一个整数总可以拆分为2的幂的和,例如:7=1+2+4 7=1+2+2+2 7=1+1+1+4 7=1+1+1+2+2 7=1+1+1+1+1+2 7=1+1+1+1+1+1+1总共有六种不 ...
- 【bzoj1002】[FJOI2007]轮状病毒 矩阵树定理+高精度
题目描述 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道.如下图所示 N轮状病 ...