http://www.lydsy.com/JudgeOnline/problem.php?id=2301

设f(i)为在区间[1, n]和区间[1, m]中,gcd(x, y) = i的个数。

设F(i)为在区间[1, n]和区间[1, m]中,gcd(x, y) % i == 0的个数,很简单的公式就是floor(n / i) * floor(m / i)

可知gcd(x, y) = k * i也属于F(i)的范围,所以可以反演得到f(i)的表达式。

算一次复杂度O(n),而且询问区间的时候要拆分成4个区间来容斥,所以总复杂度会达到4 * 5e4 * 5e4 = 1e10

技巧:(和省赛E题一样的技巧,无奈省赛一直卡E)

注意到,floor(n / i)的取值,很多是相同的,比如,7 / 2 = 7 / 3

7 / 4 = 7 / 5 = 7 / 6 = 7 / 7,注意到,值是n / i的,起点是i,终点是n / floor(n / i)

那么可以把相同的放在一起了,虽然是要两个相同才放一起,就是n / i和m / i,但是还是很好写的。

注意不要用cout,莫名re,re一小时

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <assert.h>
#define IOS ios::sync_with_stdio(false)
using namespace std;
#define inf (0x3f3f3f3f)
typedef long long int LL; #include <iostream>
#include <sstream>
#include <vector>
#include <set>
#include <map>
#include <queue>
#include <string>
#include <bitset>
#include <time.h>
const int maxn = 5e4 + ;
int prime[maxn];//这个记得用int,他保存的是质数,可以不用开maxn那么大
bool check[maxn];
int total;
int mu[maxn];
void initprime() {
mu[] = ; //固定的
for (int i = ; i <= maxn - ; i++) {
if (!check[i]) { //是质数了
prime[++total] = i; //只能这样记录,因为后面要用
mu[i] = -; //质因数分解个数为奇数
}
for (int j = ; j <= total; j++) { //质数或者合数都进行的
if (i * prime[j] > maxn - ) break;
check[i * prime[j]] = ;
if (i % prime[j] == ) {
mu[prime[j] * i] = ;
break;
}
// if (prime[j] * i > maxn - 20) while(1);
mu[prime[j] * i] = -mu[i];
//关键,使得它只被最小的质数筛去。例如i等于6的时候。
//当时的质数只有2,3,5。6和2结合筛去了12,就break了
//18留下等9的时候,9*2=18筛去
}
}
}
int sumMu[maxn];
LL ask(int n, int m, int k) {
if (k == ) return ;
n /= k;
m /= k;
LL ans = ;
int mi = min(n, m);
int nxt;
for (int i = ; i <= mi; i = nxt + ) {
nxt = min((n / (n / i)), (m / (m / i)));
ans += (sumMu[nxt] - sumMu[i - ]) * 1LL * (n / i) * (m / i);
}
return ans;
}
void work() {
int a, b, c, d, k;
// cin >> a >> b >> c >> d >> k;
scanf("%d%d%d%d%d", &a, &b, &c, &d, &k);
LL ans = ask(b, d, k) - ask(d, a - , k) - ask(c - , b, k) + ask(a - , c - , k);
printf("%lld\n", ans);
// cout << ans << endl;
} int main() {
#ifdef local
freopen("data.txt", "r", stdin);
// freopen("data.txt", "w", stdout);
#endif
initprime();
for (int i = ; i <= maxn - ; ++i) {
sumMu[i] = sumMu[i - ] + mu[i];
}
int t;
scanf("%d", &t);
while (t--) work();
return ;
}

bzoj 2301: [HAOI2011]Problem b mobius反演 RE的更多相关文章

  1. BZOJ 2301: [HAOI2011]Problem b 莫比乌斯反演

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 1007  Solved: 415[Submit][ ...

  2. Bzoj 2301: [HAOI2011]Problem b(莫比乌斯反演+除法分块)

    2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MB Description 对于给出的n个询问,每次求有多少个数对(x, ...

  3. BZOJ.2301.[HAOI2011]Problem B(莫比乌斯反演 容斥)

    [Update] 我好像现在都看不懂我当时在写什么了=-= \(Description\) 求\(\sum_{i=a}^b\sum_{j=c}^d[(i,j)=k]\) \(Solution\) 首先 ...

  4. BZOJ 2301 [HAOI2011]Problem b ——莫比乌斯反演

    分成四块进行计算,这是显而易见的.(雾) 然后考虑计算$\sum_{i=1}^n|sum_{j=1}^m gcd(i,j)=k$ 首先可以把n,m/=k,就变成统计&i<=n,j< ...

  5. BZOJ 2301 [HAOI2011]Problem b (分块 + 莫比乌斯反演)

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 6519  Solved: 3026[Submit] ...

  6. BZOJ 2301: [HAOI2011]Problem b (莫比乌斯反演)

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 436  Solved: 187[Submit][S ...

  7. bzoj 2301: [HAOI2011]Problem b

    2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MB Submit: 3757 Solved: 1671 [Submit] ...

  8. BZOJ 2301: [HAOI2011]Problem b( 数论 )

    和POI某道题是一样的...  http://www.cnblogs.com/JSZX11556/p/4686674.html 只需要二维差分一下就行了. 时间复杂度O(MAXN + N^1.5) - ...

  9. bzoj 2301 [HAOI2011]Problem b(莫比乌斯反演+分块优化)

    题意:对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 1≤n≤50000,1≤a≤b≤50000, ...

随机推荐

  1. 【boost】ptree 读写中文的问题

    最经项目中使用到了boost property_tree,却在中文问题上遇到大问题. 直接使用ptree读写存储于窄字符(如string)类型的中文字符串时,程序可以运行,但由于XML默认使用UTF- ...

  2. 时尚与深度学习系列:Fashion forward: Forecasting visual style in fashion

           https://arxiv.org/pdf/1705.06394.pdf         将深度学习与时尚预测联系在一起,是一个很有趣但是估计结果会没什么成效的话题.因为,时尚预测这一领 ...

  3. android自定义控件(四) View中的方法

    onFinishInflate() 当View中所有的子控件 均被映射成xml后触发 onMeasure(int, int) 确定所有子元素的大小 onLayout(boolean, int, int ...

  4. 机器学习 scikit-learn 图谱

    scikit-learn 是机器学习领域非常热门的一个开源库,基于Python 语言写成.可以免费使用. 网址: http://scikit-learn.org/stable/index.html 上 ...

  5. MySQL业务-发放的优惠券 用户使用情况_20161028

    运营部门给用户发放优惠券,如果想监控优惠券的使用效果 优惠券使用率是个反映效果的很好指标 下面sql就是针对某天对特定用户发放的优惠券在发放日期以后每天的使用情况 SELECT e.城市,e.用户ID ...

  6. Excel 2007无法打开多个窗口的问题

    Excel 2007使用的时候打开多个工作薄的时候,不像2003那样默认独立分开窗口显示.要切换工作簿,需要通过 “视图-切换窗口”来选择需要当前活动的窗口,这样的操作给同时操作多个工作薄来说,非常不 ...

  7. css3渐变gradient

    参考: http://www.w3cplus.com/content/css3-gradient

  8. CentOS 6.6 搭建Zabbix 3.0.3 过程

    分享CentOS 6.6下搭建Zabbix 3.0.3 的过程,希望都大家有所帮助. 环境安装 系统环境: # cat /etc/RedHat-release CentOS release 6.6 ( ...

  9. 对于makefile传递参数的一些问题

    makefile变量说明: 1.总控Makefile中使用“-e”参数覆盖下一层Makefile中的变量. 2.父级Makefile向子级Makefile传送变量方式:export <varia ...

  10. Jmeter-调整占用内存解决内存溢出

    启动jmeter.从启动jmeter的输出就可以看到,Modify HEAP  “” in the  jmeter batch file -Xmx512m  -Xms512m -Xms是初始内存,-X ...