题目大意

求n!在k进制下的位数

2≤N≤2^31, 2≤K≤200

分析

作为数学没学好的傻嗨,我们先回顾一下log函数

\(\log_a(b)=\frac 1 {log_b(a)}\)

\(\log_a (x^k)=k*\log_a x\)

\(\log_a(bc)=log_a(b)+log_a(c)\)

嗯嗯,呵呵

我们要求的是\(log_k(n!)\)

n大处理不了

用斯特林公式

\(n! \approx \sqrt{2\pi n} * (\frac n e)^n\)

\(\log_k(n!)=\frac 1 2\log_k(2\pi n)+n*log_k(\frac n e)\)

注意

n小的时候暴力求

读入写了longlong

输出不longlong我是不是傻

solution

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <cmath>
#include <algorithm>
using namespace std;
typedef long long LL;
typedef double db;
const db pi=acos(-1.0);
const db e=exp(1.0); LL n,K; db logk(db x){
return log(x)/log(K);
} int main(){
int i;
while(~scanf("%lld%lld",&n,&K)){
if(n<=10000){
db ans=0;
for(i=1;i<=n;i++) ans+=logk(i);
printf("%lld\n",(LL)(1+ans));
}
else printf("%lld\n",1+(LL)(logk(2*pi*n)*0.5+logk(n/e)*n) );
}
return 0;
}

bzoj 3000 Big Number 估算n!在k进制下的位数 斯特林公式的更多相关文章

  1. n!在k进制下的后缀0

    问n! 转化成k进制后的位数和尾数的0的个数.[UVA 10061 How many zeros and how many digits?] Given a decimal integer numbe ...

  2. 51 Nod 1116 K进制下的大数

    1116 K进制下的大数  基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题  收藏  关注 有一个字符串S,记录了一个大数,但不知这个大数是多少进制的,只知道这个数 ...

  3. 求x!在k进制下后缀零的个数(洛谷月赛T1)

    求x!在k进制下后缀和的个数 20分:     求十进制下的x!后缀和的个数 40分: 高精求阶乘,直接模拟过程 (我不管反正我不打,本蒟蒻最讨厌高精了) 60分     利用一个定理(网上有求x!在 ...

  4. 陕西师范大学第七届程序设计竞赛网络同步赛 F WWX的礼物【数学/k进制下x^n的位数/log】

    链接:https://www.nowcoder.com/acm/contest/121/F来源:牛客网 题目描述 WWX的女朋友送给了他一个礼物,可是礼物却被一把K进制密码锁锁住了.在礼物盒上还有一张 ...

  5. light oj 1045 - Digits of Factorial K进制下N!的位数

    1045 - Digits of Factorial Factorial of an integer is defined by the following function f(0) = 1 f(n ...

  6. 数位DP 求K进制下0~N的每个数每位上出现的数的总和

    好久没写博客了,因为感觉时间比较紧,另一方面没有心思,做的题目比较浅也是另一方面. 热身赛第二场被血虐了好不好,于是决定看看数位DP吧. 进入正题: 如题是一道经(简)典(单)的数位dp. 第一步,对 ...

  7. [51nod1116]K进制下的大数

    解题关键:$A\% (k - 1) = (A[0] + A[1]*k + A[2]*{k^2} + ...A[n]*{k^n})\% (k - 1) = (A[0] + A[1] + ...A[n]) ...

  8. 51nod 1116 K进制下的大数

    你万万想不到,Long Long 就能存下的数据 #include <iostream> #include <cstdio> #include <cstdlib> ...

  9. 51nod 1116 K进制下的大数 (暴力枚举)

    题目链接 题意:中文题. 题解:暴力枚举. #include <iostream> #include <cstring> using namespace std; ; ; ch ...

随机推荐

  1. python中yield的用法详解

    首先我要吐槽一下,看程序的过程中遇见了yield这个关键字,然后百度的时候,发现没有一个能简单的让我懂的,讲起来真TM的都是头头是道,什么参数,什么传递的,还口口声声说自己的教程是最简单的,最浅显易懂 ...

  2. iOS重绘机制drawRect

    iOS的绘图操作是在UIView类的drawRect方法中完成的,所以如果我们要想在一个UIView中绘图,需要写一个扩展UIView 的类,并重写drawRect方法,在这里进行绘图操作,程序会自动 ...

  3. 修改broadcom 4322无线网卡ID教程,不再显示第三方无线网卡

    本帖最后由 hellokingabc 于 2016-1-11 03:07 编辑 黑苹果已经基本完美,但是无线网卡总是出现问题,经常断网,经过搜索,原因在于无线网卡在OSX系统下显示为第三方无线网卡,只 ...

  4. django logging日志优先级

    原创博文 转载请注明出处! 参考官方文档:https://docs.djangoproject.com/en/2.1/topics/logging/ Loggers¶ A logger is the ...

  5. 【转】C++后台开发应该读的书

    转载自http://www.cnblogs.com/balloonwj/articles/9094905.html 作者 左雪菲 根据我的经验来谈一谈,先介绍一下我的情况,坐标上海,后台开发(也带团队 ...

  6. [BZOJ] 1520: [POI2006]Szk-Schools

    费用流解决. abs内传不了int..CE一次 #include<iostream> #include<cstring> #include<cstdio> #inc ...

  7. 洛谷 4219/BZOJ 4530 大融合

    4530: [Bjoi2014]大融合 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 990  Solved: 604[Submit][Status] ...

  8. mysql关联查询

    mysql数据库的统计------生成统计信息 1.distinct:在一组之中将各个唯一的值找出来,如找出所有的品牌种类 mysql>select distinct brand_kind fr ...

  9. (70)zabbix telnet监控类型

    概述 zabbix监控的方式很多,例如前面讲到的agent.snmp以及后续后续要讲到ssh和今天要讲到的telnet.流程很简单,创建item-->配置ip.用户.密码.端口.脚本->z ...

  10. 基于Centos7.2搭建Cobbler自动化批量部署操作系统服务

    1       Cobbler服务器端系统环境配置 1.1     系统基本环境准备 [root@cobbler-server ~]# cat /etc/redhat-release CentOS L ...