bzoj 3000 Big Number 估算n!在k进制下的位数 斯特林公式
题目大意
求n!在k进制下的位数
2≤N≤2^31, 2≤K≤200
分析
作为数学没学好的傻嗨,我们先回顾一下log函数
\(\log_a(b)=\frac 1 {log_b(a)}\)
\(\log_a (x^k)=k*\log_a x\)
\(\log_a(bc)=log_a(b)+log_a(c)\)
嗯嗯,呵呵
我们要求的是\(log_k(n!)\)
n大处理不了
用斯特林公式
\(n! \approx \sqrt{2\pi n} * (\frac n e)^n\)
\(\log_k(n!)=\frac 1 2\log_k(2\pi n)+n*log_k(\frac n e)\)
注意
n小的时候暴力求
读入写了longlong
输出不longlong我是不是傻
solution
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <cmath>
#include <algorithm>
using namespace std;
typedef long long LL;
typedef double db;
const db pi=acos(-1.0);
const db e=exp(1.0);
LL n,K;
db logk(db x){
return log(x)/log(K);
}
int main(){
int i;
while(~scanf("%lld%lld",&n,&K)){
if(n<=10000){
db ans=0;
for(i=1;i<=n;i++) ans+=logk(i);
printf("%lld\n",(LL)(1+ans));
}
else printf("%lld\n",1+(LL)(logk(2*pi*n)*0.5+logk(n/e)*n) );
}
return 0;
}
bzoj 3000 Big Number 估算n!在k进制下的位数 斯特林公式的更多相关文章
- n!在k进制下的后缀0
问n! 转化成k进制后的位数和尾数的0的个数.[UVA 10061 How many zeros and how many digits?] Given a decimal integer numbe ...
- 51 Nod 1116 K进制下的大数
1116 K进制下的大数 基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题 收藏 关注 有一个字符串S,记录了一个大数,但不知这个大数是多少进制的,只知道这个数 ...
- 求x!在k进制下后缀零的个数(洛谷月赛T1)
求x!在k进制下后缀和的个数 20分: 求十进制下的x!后缀和的个数 40分: 高精求阶乘,直接模拟过程 (我不管反正我不打,本蒟蒻最讨厌高精了) 60分 利用一个定理(网上有求x!在 ...
- 陕西师范大学第七届程序设计竞赛网络同步赛 F WWX的礼物【数学/k进制下x^n的位数/log】
链接:https://www.nowcoder.com/acm/contest/121/F来源:牛客网 题目描述 WWX的女朋友送给了他一个礼物,可是礼物却被一把K进制密码锁锁住了.在礼物盒上还有一张 ...
- light oj 1045 - Digits of Factorial K进制下N!的位数
1045 - Digits of Factorial Factorial of an integer is defined by the following function f(0) = 1 f(n ...
- 数位DP 求K进制下0~N的每个数每位上出现的数的总和
好久没写博客了,因为感觉时间比较紧,另一方面没有心思,做的题目比较浅也是另一方面. 热身赛第二场被血虐了好不好,于是决定看看数位DP吧. 进入正题: 如题是一道经(简)典(单)的数位dp. 第一步,对 ...
- [51nod1116]K进制下的大数
解题关键:$A\% (k - 1) = (A[0] + A[1]*k + A[2]*{k^2} + ...A[n]*{k^n})\% (k - 1) = (A[0] + A[1] + ...A[n]) ...
- 51nod 1116 K进制下的大数
你万万想不到,Long Long 就能存下的数据 #include <iostream> #include <cstdio> #include <cstdlib> ...
- 51nod 1116 K进制下的大数 (暴力枚举)
题目链接 题意:中文题. 题解:暴力枚举. #include <iostream> #include <cstring> using namespace std; ; ; ch ...
随机推荐
- VMware vSphere6.0 服务器虚拟化部署安装图解
一 VMware vSphere部署的前期规划要点 1 vSphere的优点 (略) 2 如何利用现在的设备架构虚拟化环境 在虚拟化过程中,用户大多会考虑目前现有的服务器.存储.交换机等基础设备是否可 ...
- c++ 读取文件 最后一行读取了两次
用ifstream的eof(),竟然读到文件最后了,判断eof还为false.网上查找资料后,终于解决这个问题. 参照文件:http://tuhao.blogbus.com/logs/21306687 ...
- jQuery向界面输出时保留两位小数
通过JSTL下的<fmt:formatNumber>标签实现,具体实现代码如下: <%@ taglib uri="http://java.sun.com/jsp/jstl/ ...
- 12_1_Annotation注解
12_1_Annotation注解 1. 什么是注解 Annotation是从JDK5.0开始引入的新技术. Annotation的作用: 不是程序本身,可以对程序作出解释.可以被其他程序(比如,编译 ...
- ssh整合思想 Spring分模块开发 crud参数传递 解决HTTP Status 500 - Write operations are not allowed in read-only mode (FlushMode.MANUAL): Turn your Session into FlushMode.COMMIT/AUTO or(增加事务)
在Spring核心配置文件中没有增加事务方法,导致以上问题 Action类UserAction package com.swift.action; import com.opensymphony.xw ...
- ios下通过webservice获取数据
经历了两天的摸索,终于成功获取了数据,因为公司要做一个停车入库的信息查询,所以需要访问webservice的接口,由于没有接触过webservice,所以第一天就是各种搜索资料,类库,各种尝试,甚至是 ...
- module.exports exports 和export export default
首先可以知道的是这是两组不同模块规范. module.exports 是CommonJS模块规范,通过require 导入 a.js: var x = 'hello' module.exports.x ...
- CE软件修改器
下载地址: 链接:https://pan.baidu.com/s/1WQa5epfmLW92xk0XY10pqw 提取码:jt3k 喜欢请点赞
- STM32CUBEMX入门学习笔记2:关于STM32芯片使用内部flash
找到正点原子的官网,下载他的HAL库:http://www.openedv.com/thread-109778-1-1.html 找到此例程,并打开其工程文件. 找到此文件,复制到自己工程里 复制到自 ...
- Aizu - 1386 Starting a Scenic Railroad Service (思维乱搞)
给你n个区间,求: 1:最多有多少区间与同一个区间相交. 2:相交部分的最大区间数目. Sample Input 1 4 1 3 1 3 3 6 3 6 Sample Output 1 2 2 Sam ...