题意:

For an integer n, let F(n) = (n - 0^2) * (n - 1^2) * (n - 2^2) * (n - 3^2) * ... * (n - k^2), where k is the largest integer such that n - k^2 > 0. You are given three long longs lo, hi and divisor. It is guaranteed that divisor will be a prime number. Compute and return the number of integers n between lo and hi, inclusive, such that F(n) is divisible by divisor.

思路:

等价转换关系

整除质数<==>有这个质因子

[lo,hi]<==>[1,hi]  - [1,lo-1]

首先考虑直接整除的。

对于区间[1,x],个数为x/divisor个

其次考虑后面的量

注意到之间是乘法关系。所以每个量都可以考虑。

假设n-k可以被divisor整除,那么相当与n是在每个divisor整除数的后k位。

这里有一个性质:这些n间隔也是divisor

考虑重复问题:如果%divisor相等,则可能重复。

k越小,可包含的区间越大。所以从小到大处理k就好。如果取模出现过,就不计算。因为一定已经被之前的计算过了。

至于计算区间 对于[0,x], k

就是[k+1,x].(如果k>x那就=0,是k+1的原因是题目要求>0,即不能从0偏移k得到。)

个数就是(x-k)/divisor

代码

#define FOR(I,A,B) for(int I = (A); I < (B); ++I)
#define REP(I,N) FOR(I,0,N)
#define ALL(A) (A).begin(), (A).end() class SparseFactorialDiv2
{
public:
long long getCount(long long lo, long long hi, long long divisor)
{
int vis[];
REP(i, ) vis[i] = ;
long long ans = ;
for (long long i = ; i*i<hi; i++) {
long long mod = (i*i)%divisor;
if (!vis[mod]) {
vis[mod] = ;
long long nlo = ;
if (lo- > i*i) nlo = (lo--i*i)/divisor;
long long nhi = ;
nhi = (hi-i*i)/divisor;
ans += nhi-nlo;
}
}
return ans;
}
};
 

TopCoder SRM596 DIV2 1000: SparseFactorialDiv2的更多相关文章

  1. Topcoder Srm 673 Div2 1000 BearPermutations2

    \(>Topcoder \space Srm \space 673 \space Div2 \space 1000 \space BearPermutations2<\) 题目大意 : 对 ...

  2. Topcoder Srm 671 Div2 1000 BearDestroysDiv2

    \(>Topcoder \space Srm \space 671 \space Div2 \space 1000 \space BearDestroysDiv2<\) 题目大意 : 有一 ...

  3. SRM 146 DIV2 1000

    Problem Statement      A well-known riddle goes like this: Four people are crossing an old bridge. T ...

  4. TopCoder SRM500 Div1 1000 其他

    原文链接https://www.cnblogs.com/zhouzhendong/p/SRM500-1000.html SRM500 Div1 1000 设 \(v_1,v_2,\cdots ,v_9 ...

  5. TopCoder SRM502 Div1 1000 动态规划

    原文链接https://www.cnblogs.com/zhouzhendong/p/SRM502-1000.html SRM502 Div1 1000 题意 从 [0,n-1] 中选择 k 个不同的 ...

  6. topcoder 649 DIV2

    8 A:模拟 9:B:终于看懂题目... 题意:最多分解K次 每分钟一个数可以分解成两个数 或者-1: 关键字:DP,记忆花搜索. DP[I][J]=min(dp[i][j],1+max(dp[ii] ...

  7. SRM 595 DIV2 1000

    数位DP的感觉,但是跟模版不是一个套路的,看的题解,代码好理解,但是确实难想. #include <cstdio> #include <cstring> #include &l ...

  8. TC SRM 593 DIV2 1000

    很棒的DP,不过没想出,看题解了..思维很重要. #include <iostream> #include <cstdio> #include <cstring> ...

  9. TC SRM 591 DIV2 1000

    很不错的一题,非常巧妙的用DP顺序解决这个问题... 可以发现,只和A里面最小的有关系... #include <cstdio> #include <cstring> #inc ...

随机推荐

  1. c++ 指针数组,输入4个季度的花费,计算出总花费

    #include <iostream> #include <array> #include <string> const int Seasons = 4; cons ...

  2. vc文件操作汇总—支持wince

    一.判断文件及文件夹是否存在 // 判断文件是否存在 BOOL IsFileExist(const CString& csFile) { DWORD dwAttrib = GetFileAtt ...

  3. mysql关联查询

    mysql数据库的统计------生成统计信息 1.distinct:在一组之中将各个唯一的值找出来,如找出所有的品牌种类 mysql>select distinct brand_kind fr ...

  4. Bootstrap 模态框 select2搜索框无法输入

    去掉模态框的div中的 tabindex="-1" 这个属性 <div class="modal fade" role="dialog" ...

  5. IE浏览器缓存问题解决方法(非常严重)

    IE浏览器缓存问题解决方法整理 一.IE浏览器缓存的内容分析: IE浏览器会缓存网页中的GET和XHR的内容,并且在IE浏览器中如果请求方式是get方式的话,IE浏览器会进行识别,如果该get请求的u ...

  6. jquery.imgpreload.min.js插件实现页面图片预加载

    页面分享地址: http://wenku.baidu.com/link?url=_-G8miwbgDmEj6miyFtjit1duJggBCJmFjR2jky_G1VftD9eS9kwGOlFWAOR ...

  7. selenium+phantomjs爬取京东商品信息

    selenium+phantomjs爬取京东商品信息 今天自己实战写了个爬取京东商品信息,和上一篇的思路一样,附上链接:https://www.cnblogs.com/cany/p/10897618. ...

  8. LeetCode(278)First Bad Version

    题目 You are a product manager and currently leading a team to develop a new product. Unfortunately, t ...

  9. hbase问题总结

    一.客户端访问hbase时出现no further information 使用java api访问hbase时,一直连不上,查看日志发现以下错误: java.net.ConnectException ...

  10. 安装go 1.5 & 部署

    https://storage.googleapis.com/golang/go1.5.linux-amd64.tar.gz tar -C /usr/local -xzf go1.5.linux-am ...