解法:

首先bfs预处理go数组:可可在j点时聪聪在点i是怎样贪心走的,这是为了之后O(1)获取转移线路。

然后dfs记忆化一下f[i][j],代表从i到j的期望,对于每层:将所有情况的期望值相加。边界值是聪聪与可可在同一个点期望为0、聪聪一步或两步可到可可处期望为1。

 const int maxn = ;
int n, m, st, ed;
vector<int> dd[maxn];
int go[maxn][maxn];
db f[maxn][maxn]; void bfs() {
for (int i = ; i <= n; i++)
sort(dd[i].begin(), dd[i].end());
for (int i = ; i <= n; i++) {
queue<P> Q;
bool vis[n + ];
memset(vis, false, sizeof vis);
vis[i] = true;
for (int t = ; t < dd[i].size(); t++) {
int j = dd[i][t];
Q.push(P(j, j));
vis[j] = true;
go[i][j] = j;
}
while (!Q.empty()) {
P x = Q.front(); Q.pop();
for (int t = ; t < dd[x.first].size(); t++) {
int j = dd[x.first][t];
if (!vis[j]) {
vis[j] = true;
go[i][j] = x.second;
Q.push(P(j, x.second));
}
}
}
}
} db dfs(int i, int j) {
if (i == j) return f[i][j] = ;
if (go[i][j] == j || go[go[i][j]][j] == j) return f[i][j] = ;
if (f[i][j] == ) {
db p = dd[j].size() + ;
int nx = go[go[i][j]][j];
for (int k = ; k < dd[j].size(); k++) {
f[i][j] += dfs(nx, dd[j][k]);
}
f[i][j] += dfs(nx, j);
f[i][j] = f[i][j] / p + ;
}
return f[i][j];
} int main() {
read(n), read(m), read(st), read(ed);
for (int i = ; i <= m; i++) {
int u, v;
read(u), read(v);
dd[u].push_back(v);
dd[v].push_back(u);
}
bfs();
printf("%.3lf\n", dfs(st, ed));
return ;
}

BZOJ1415(期望dp)的更多相关文章

  1. 【bzoj1415】【聪聪和可可】期望dp(记忆化搜索)+最短路

    [pixiv] https://www.pixiv.net/member_illust.php?mode=medium&illust_id=57148470 Descrition 首先很明显是 ...

  2. BZOJ1415 聪聪与可可 - 期望dp

    传送门 题目大意: 一张无向图上有一只猫和一只老鼠,猫先走,鼠后走.猫每次会向与其相邻的并且距离老鼠最近的点移动(若距离相等去编号较小的),如果移动一步后还没吃到老鼠,还可以再移动一步(算在一个时间内 ...

  3. 【BZOJ-1419】Red is good 概率期望DP

    1419: Red is good Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 660  Solved: 257[Submit][Status][Di ...

  4. [NOIP2016]换教室 D1 T3 Floyed+期望DP

    [NOIP2016]换教室 D1 T3 Description 对于刚上大学的牛牛来说, 他面临的第一个问题是如何根据实际情况中情合适的课程. 在可以选择的课程中,有2n节课程安排在n个时间段上.在第 ...

  5. HDU 4336 Card Collector (期望DP+状态压缩 或者 状态压缩+容斥)

    题意:有N(1<=N<=20)张卡片,每包中含有这些卡片的概率,每包至多一张卡片,可能没有卡片.求需要买多少包才能拿到所以的N张卡片,求次数的期望. 析:期望DP,是很容易看出来的,然后由 ...

  6. 【BZOJ-4008】亚瑟王 概率与期望 + DP

    4008: [HNOI2015]亚瑟王 Time Limit: 20 Sec  Memory Limit: 512 MBSec  Special JudgeSubmit: 832  Solved: 5 ...

  7. 期望dp BZOJ3450+BZOJ4318

    BZOJ3450 概率期望DP f[i]表示到i的期望得分,g[i]表示到i的期望长度. 分三种情况转移: ① s[i]=‘x’:f[i]=f[i-1],g[i]=0 ② s[i]=‘o’:f[i]= ...

  8. HDU 4405 期望DP

    期望DP算是第一题吧...虽然巨水但把思路理理清楚总是好的.. 题意:在一个1×n的格子上掷色子,从0点出发,掷了多少前进几步,同时有些格点直接相连,即若a,b相连,当落到a点时直接飞向b点.求走到n ...

  9. POJ 2096 【期望DP】

    题意: 有n种选择,每种选择对应m种状态.每种选择发生的概率相等,每种选择中对应的每种状态发生的概率相等. 求n种选择和m种状态中每种至少发生一次的期望. 期望DP好别扭啊.要用倒推的方法. dp[i ...

  10. ZOJ 3822 Domination 期望dp

    Domination Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.zju.edu.cn/onlinejudge/showProblem ...

随机推荐

  1. vue定义全局变量和全局方法

    一.全局引入文件 1.先定义共用组件 common.vue <script type="text/javascript"> // 定义一些公共的属性和方法 const ...

  2. 在Eclipse Java EE编译器中修改Web项目的发布名称

    在工程目录上右键, 选properties, 弹出属性窗口, 选中Web Project Settings, 在右边的Context root中修改保存即可 死马当做活马医 在你的工程目录下找到.se ...

  3. 网页上传FLV视频文件

    上传 flv格式文件一致提示文件类型不允许,是因为CI中的配置文件没有支持这个格式 在 application/config/mimes.php中加入 'flv' => array('video ...

  4. 动态调试Android程序

    最近好几天来一直在看动态调试.首先是这一篇(http://www.52pojie.cn/forum.php?mod=viewthread&tid=293648)里面介绍了多种IDA动态调试的情 ...

  5. vue 常用的表单验证,包括手机号码,固定电话和身份证...

    <template> <div> <pl-content-box> <pl-page-nav :show-previous=true></pl-p ...

  6. 洛谷P1462通往奥格瑞玛的道路——二分答案最短路

    题目:https://www.luogu.org/problemnew/show/P1462 最大值最小问题,二分答案. 代码如下: #include<iostream> #include ...

  7. Code:NFine目录

    ylbtech-Code:NFine目录 1.返回顶部   2.返回顶部   3.返回顶部   4.返回顶部   5.返回顶部     6.返回顶部   作者:ylbtech出处:http://ylb ...

  8. cobbler api

    try: import xmlrpclib except ImportError as e: import xmlrpc.client SERVER_IP = '192.168.144.11' try ...

  9. CS231n 2016 通关 第五、六章 Fully-Connected Neural Nets 作业

    要求:实现任意层数的NN. 每一层结构包含: 1.前向传播和反向传播函数:2.每一层计算的相关数值 cell 1 依旧是显示的初始设置 # As usual, a bit of setup impor ...

  10. activeMQ:java消息机制初试(一)

    前言:自打学习编程以来,就知道activeMQ这么个东西,但是仅仅限于只知其名,不闻其详.现在加入到新的项目组,项目中使用了这个.现在想重新去学习和了解.最后整合成一个完成的demo,在网上看的Dem ...