解法:

首先bfs预处理go数组:可可在j点时聪聪在点i是怎样贪心走的,这是为了之后O(1)获取转移线路。

然后dfs记忆化一下f[i][j],代表从i到j的期望,对于每层:将所有情况的期望值相加。边界值是聪聪与可可在同一个点期望为0、聪聪一步或两步可到可可处期望为1。

 const int maxn = ;
int n, m, st, ed;
vector<int> dd[maxn];
int go[maxn][maxn];
db f[maxn][maxn]; void bfs() {
for (int i = ; i <= n; i++)
sort(dd[i].begin(), dd[i].end());
for (int i = ; i <= n; i++) {
queue<P> Q;
bool vis[n + ];
memset(vis, false, sizeof vis);
vis[i] = true;
for (int t = ; t < dd[i].size(); t++) {
int j = dd[i][t];
Q.push(P(j, j));
vis[j] = true;
go[i][j] = j;
}
while (!Q.empty()) {
P x = Q.front(); Q.pop();
for (int t = ; t < dd[x.first].size(); t++) {
int j = dd[x.first][t];
if (!vis[j]) {
vis[j] = true;
go[i][j] = x.second;
Q.push(P(j, x.second));
}
}
}
}
} db dfs(int i, int j) {
if (i == j) return f[i][j] = ;
if (go[i][j] == j || go[go[i][j]][j] == j) return f[i][j] = ;
if (f[i][j] == ) {
db p = dd[j].size() + ;
int nx = go[go[i][j]][j];
for (int k = ; k < dd[j].size(); k++) {
f[i][j] += dfs(nx, dd[j][k]);
}
f[i][j] += dfs(nx, j);
f[i][j] = f[i][j] / p + ;
}
return f[i][j];
} int main() {
read(n), read(m), read(st), read(ed);
for (int i = ; i <= m; i++) {
int u, v;
read(u), read(v);
dd[u].push_back(v);
dd[v].push_back(u);
}
bfs();
printf("%.3lf\n", dfs(st, ed));
return ;
}

BZOJ1415(期望dp)的更多相关文章

  1. 【bzoj1415】【聪聪和可可】期望dp(记忆化搜索)+最短路

    [pixiv] https://www.pixiv.net/member_illust.php?mode=medium&illust_id=57148470 Descrition 首先很明显是 ...

  2. BZOJ1415 聪聪与可可 - 期望dp

    传送门 题目大意: 一张无向图上有一只猫和一只老鼠,猫先走,鼠后走.猫每次会向与其相邻的并且距离老鼠最近的点移动(若距离相等去编号较小的),如果移动一步后还没吃到老鼠,还可以再移动一步(算在一个时间内 ...

  3. 【BZOJ-1419】Red is good 概率期望DP

    1419: Red is good Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 660  Solved: 257[Submit][Status][Di ...

  4. [NOIP2016]换教室 D1 T3 Floyed+期望DP

    [NOIP2016]换教室 D1 T3 Description 对于刚上大学的牛牛来说, 他面临的第一个问题是如何根据实际情况中情合适的课程. 在可以选择的课程中,有2n节课程安排在n个时间段上.在第 ...

  5. HDU 4336 Card Collector (期望DP+状态压缩 或者 状态压缩+容斥)

    题意:有N(1<=N<=20)张卡片,每包中含有这些卡片的概率,每包至多一张卡片,可能没有卡片.求需要买多少包才能拿到所以的N张卡片,求次数的期望. 析:期望DP,是很容易看出来的,然后由 ...

  6. 【BZOJ-4008】亚瑟王 概率与期望 + DP

    4008: [HNOI2015]亚瑟王 Time Limit: 20 Sec  Memory Limit: 512 MBSec  Special JudgeSubmit: 832  Solved: 5 ...

  7. 期望dp BZOJ3450+BZOJ4318

    BZOJ3450 概率期望DP f[i]表示到i的期望得分,g[i]表示到i的期望长度. 分三种情况转移: ① s[i]=‘x’:f[i]=f[i-1],g[i]=0 ② s[i]=‘o’:f[i]= ...

  8. HDU 4405 期望DP

    期望DP算是第一题吧...虽然巨水但把思路理理清楚总是好的.. 题意:在一个1×n的格子上掷色子,从0点出发,掷了多少前进几步,同时有些格点直接相连,即若a,b相连,当落到a点时直接飞向b点.求走到n ...

  9. POJ 2096 【期望DP】

    题意: 有n种选择,每种选择对应m种状态.每种选择发生的概率相等,每种选择中对应的每种状态发生的概率相等. 求n种选择和m种状态中每种至少发生一次的期望. 期望DP好别扭啊.要用倒推的方法. dp[i ...

  10. ZOJ 3822 Domination 期望dp

    Domination Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.zju.edu.cn/onlinejudge/showProblem ...

随机推荐

  1. html video api控件总结

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  2. (转)定制findbugs规则

    转载自http://www.51testing.com/html/97/13997-211893.html 这类文章极少,字节码操作需要对becl库及jvm字节码操作有一定常识.参考: http:// ...

  3. python写excel

    例一,普通写入: # -*-coding: utf-8-*- import xlwt workbook = xlwt.Workbook() sheet = workbook.add_sheet('sh ...

  4. fiddler_test

    fiddler学习第二天 啦啦啦 拉拉呀

  5. swoole异步redis安装前置条件和流程

    ---恢复内容开始--- 1.redis服务 确认redis在服务器中已经安装了 2.hiredis库 第二步安装hiredis 下载位置 2.1获取 安装包https://github.com/re ...

  6. ip策略路由

    ip route 只是基于目的地址的路由选择 ip rule 路由策略,控制路由选择,可根据源地址,源IP等进行路由选择   路由策略由选择符合操作组成 ip rule add   添加策略 ip r ...

  7. python下载各大主流视频网站电影

    You-Get 是一个命令行工具, 用来下载各大视频网站的视频, 是我目前知道的命令行下载工具中最好的一个, 之前使用过 youtube-dl, 但是 youtube-dl 吧, 下载好的视频是分段的 ...

  8. Azure AD (6) 停止Azure AD Connect Sync同步,并删除自定义域名

    <Windows Azure Platform 系列文章目录> 如果你已经了解了我之前写的文章:Azure AD (5) 在单一目录下,使用Azure AD单点登录 应该对使用Azure ...

  9. webpack 知识点总结

    1 webpack 的不同点: 1.1 实现代码分割 1.2 loaders 1.3 plugin system 2 webpack 打包css,需要使用css-loaders 使webpack识别c ...

  10. bzoj4589

    fwt 原理并不知道 nim游戏石子异或和=0后手赢 那么也就是求a[1]^a[2]^...^a[n]=0的方案数 这个和bzoj3992一样可以dp dp[i][j]表示前i个数异或和为j的方案数 ...