[视觉识别]OpenCV + CNN 大神符识别
数据集
Mnist数据集:http://yann.lecun.com/exdb/mnist/
训练
import numpy as np
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense,Activation,Conv2D,MaxPooling2D,Flatten,Dropout,BatchNormalization,ZeroPadding2D
from keras.optimizers import Adam
from keras import backend as K
K.backend()
import tensorflow as tf
import cv2 as cv
import pandas as pd
#加载数据
datas=pd.read_csv("mnist_train.csv")
images=datas.iloc[:,1:].values
x_image=images.astype(np.float)
x_image=np.multiply(x_image,1.0/255.0)
labels=datas.iloc[:,0].values
x_image[0]
labels[0]
#CNN模型加载
def loadCNN():
model = Sequential()
model.add(Conv2D(32,(3,3),padding="valid",input_shape=(28,28,1)))
convout1 = Activation("relu")
model.add(convout1)
model.add(BatchNormalization(epsilon=1e-6,axis=1))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(ZeroPadding2D((1,1)))
model.add(Conv2D(48,(3,3)))
convout2 = Activation("relu")
model.add(convout2)
model.add(BatchNormalization(epsilon=1e-6,axis=1))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Conv2D(64,(2,2)))
convout3 = Activation("relu")
model.add(convout3)
model.add(BatchNormalization(epsilon=1e-6,axis=1))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Dropout(0.5))
model.add(Flatten())
model.add(Dense(3168))
model.add(Activation("relu"))
model.add(Dense(10))
model.add(Activation("softmax"))
model.compile(loss="categorical_crossentropy",optimizer="adam",metrics=['accuracy'])
model.summary()
model.get_config()
return model
#训练加存储
from keras.utils import to_categorical
x_input = x_image.reshape([-1,28,28,1])
y_input = to_categorical(labels, num_classes=10)
print(y_input.shape)
model = loadCNN()
hist = model.fit(x_input,y_input,batch_size = 32,epochs=15,verbose=1, validation_split=0.2)
model.save_weights("model/mnist.hdf5",overwrite=True)
Layer (type) Output Shape Param # ================================================================= conv2d_1 (Conv2D) (None, 26, 26, 32) 320 _________________________________________________________________ activation_1 (Activation) (None, 26, 26, 32) 0 _________________________________________________________________ batch_normalization_1 (Batch (None, 26, 26, 32) 104 _________________________________________________________________ max_pooling2d_1 (MaxPooling2 (None, 13, 13, 32) 0 _________________________________________________________________ zero_padding2d_1 (ZeroPaddin (None, 15, 15, 32) 0 _________________________________________________________________ conv2d_2 (Conv2D) (None, 13, 13, 48) 13872 _________________________________________________________________ activation_2 (Activation) (None, 13, 13, 48) 0 _________________________________________________________________ batch_normalization_2 (Batch (None, 13, 13, 48) 52 _________________________________________________________________ max_pooling2d_2 (MaxPooling2 (None, 6, 6, 48) 0 _________________________________________________________________ conv2d_3 (Conv2D) (None, 5, 5, 64) 12352 _________________________________________________________________ activation_3 (Activation) (None, 5, 5, 64) 0 _________________________________________________________________ batch_normalization_3 (Batch (None, 5, 5, 64) 20 _________________________________________________________________ max_pooling2d_3 (MaxPooling2 (None, 2, 2, 64) 0 _________________________________________________________________ dropout_1 (Dropout) (None, 2, 2, 64) 0 _________________________________________________________________ flatten_1 (Flatten) (None, 256) 0 _________________________________________________________________ dense_1 (Dense) (None, 3168) 814176 _________________________________________________________________ activation_4 (Activation) (None, 3168) 0 _________________________________________________________________ dense_2 (Dense) (None, 10) 31690 _________________________________________________________________ activation_5 (Activation) (None, 10) 0 ================================================================= Total params: 872,586 Trainable params: 872,498 Non-trainable params: 88 _________________________________________________________________ Train on 47999 samples, validate on 12000 samples Epoch 1/15 47999/47999 [==============================] - 1641s 34ms/step - loss: 0.2381 - acc: 0.9250 - val_loss: 0.0724 - val_acc: 0.9762 Epoch 2/15 47999/47999 [==============================] - 1634s 34ms/step - loss: 0.1009 - acc: 0.9693 - val_loss: 0.0486 - val_acc: 0.9852 Epoch 3/15 47999/47999 [==============================] - 1626s 34ms/step - loss: 0.0787 - acc: 0.9768 - val_loss: 0.0472 - val_acc: 0.9863 Epoch 4/15 47999/47999 [==============================] - 1619s 34ms/step - loss: 0.0623 - acc: 0.9805 - val_loss: 0.0358 - val_acc: 0.9892 Epoch 5/15 47999/47999 [==============================] - 1627s 34ms/step - loss: 0.0568 - acc: 0.9829 - val_loss: 0.0427 - val_acc: 0.9878 Epoch 6/15 47999/47999 [==============================] - 1631s 34ms/step - loss: 0.0496 - acc: 0.9847 - val_loss: 0.0355 - val_acc: 0.9908 Epoch 7/15 47999/47999 [==============================] - 1626s 34ms/step - loss: 0.0430 - acc: 0.9871 - val_loss: 0.0284 - val_acc: 0.9922 Epoch 8/15 47999/47999 [==============================] - 1632s 34ms/step - loss: 0.0390 - acc: 0.9877 - val_loss: 0.0269 - val_acc: 0.9922 Epoch 9/15 47999/47999 [==============================] - 1632s 34ms/step - loss: 0.0363 - acc: 0.9886 - val_loss: 0.0341 - val_acc: 0.9904 Epoch 10/15 47999/47999 [==============================] - 1634s 34ms/step - loss: 0.0315 - acc: 0.9896 - val_loss: 0.0321 - val_acc: 0.9908 Epoch 11/15 47999/47999 [==============================] - 1626s 34ms/step - loss: 0.0301 - acc: 0.9907 - val_loss: 0.0325 - val_acc: 0.9912 Epoch 12/15 47999/47999 [==============================] - 1638s 34ms/step - loss: 0.0284 - acc: 0.9906 - val_loss: 0.0280 - val_acc: 0.9928 Epoch 13/15 47999/47999 [==============================] - 1635s 34ms/step - loss: 0.0261 - acc: 0.9920 - val_loss: 0.0313 - val_acc: 0.9919 Epoch 14/15 47999/47999 [==============================] - 1642s 34ms/step - loss: 0.0246 - acc: 0.9923 - val_loss: 0.0246 - val_acc: 0.9935 Epoch 15/15 47999/47999 [==============================] - 1639s 34ms/step - loss: 0.0228 - acc: 0.9926 - val_loss: 0.0288 - val_acc: 0.9922
测试
def test():
model = loadCNN()
model.load_weights("model/mnist.hdf5")
cap = cv.VideoCapture("test.wmv")
while(cap.isOpened()):
ret,frame = cap.read()
img = draw(model,frame)
cv.imshow(",img)
if cv.waitKey(1) == 27:
break
cap.release()
cv.destroyAllWindows()
def draw(model,img):
kernel = np.ones((3,3),np.uint8)
gray = cv.cvtColor(img,cv.COLOR_BGR2GRAY)
lower_hsv = np.array([0,0,223])
upper_hsv = np.array([198,38,255])
ROI = cv.cvtColor(img,cv.COLOR_BGR2HSV)
frame = cv.inRange(ROI,lower_hsv,upper_hsv)
image,contours, hierarchy= cv.findContours(frame,cv.RETR_LIST,cv.CHAIN_APPROX_SIMPLE)
i=0
for contour in contours:
if len(contour) >3:
x,y,w,h = cv.boundingRect(contour)
if w/h>=1.35 and w>15 and h >20 and w <=45:
#print(x,y,w,h)
p_img = gray[y:y+h, x+w//2-h//2:x+w//2+h//2]
p_img = cv.erode(p_img,kernel)
p_img = cv.resize(p_img,(28,28),interpolation= cv.INTER_LINEAR)
ph,pw = p_img.shape
for hx in range(ph):
for wy in range(pw):
p_img[hx][wy] = 255- p_img[hx][wy]
p_img = np.array(p_img,'f')
p_img = p_img/ 255.0
p_img = p_img.reshape([-1,28,28,1])
pdt = np.argmax(model.predict(p_img))
cv.putText(img,str(pdt),(x,y),cv.FONT_HERSHEY_COMPLEX,0.8,(0,0,255),1)
####这里用来判断
#print(x,y,w,h)
#cv.rectangle(img, (x+ w//2-h//2,y), (x+w//2+h//2, y + h), (0, 0, 225), 3)
#cv.drawContours(img, contours, -1, (0, 0, 255), 3)
#print(i)
return img
test()

[视觉识别]OpenCV + CNN 大神符识别的更多相关文章
- OPENCV条形码检测与识别
条形码是当前超市和部分工厂使用比较普遍的物品,产品标识技术,使用摄像头检测一张图片的条形码包含有两个步骤,第一是定位条形码的位置,定位之后剪切出条形码,并且识别出条形码对应的字符串,然后就可以调用网络 ...
- Java基于opencv实现图像数字识别(五)—投影法分割字符
Java基于opencv实现图像数字识别(五)-投影法分割字符 水平投影法 1.水平投影法就是先用一个数组统计出图像每行黑色像素点的个数(二值化的图像): 2.选出一个最优的阀值,根据比这个阀值大或小 ...
- Java基于opencv实现图像数字识别(四)—图像降噪
Java基于opencv实现图像数字识别(四)-图像降噪 我们每一步的工作都是基于前一步的,我们先把我们前面的几个函数封装成一个工具类,以后我们所有的函数都基于这个工具类 这个工具类呢,就一个成员变量 ...
- 手把手教你使用LabVIEW OpenCV dnn实现物体识别(Object Detection)含源码
前言 今天和大家一起分享如何使用LabVIEW调用pb模型实现物体识别,本博客中使用的智能工具包可到主页置顶博客LabVIEW AI视觉工具包(非NI Vision)下载与安装教程中下载 一.物体识别 ...
- Java基于opencv实现图像数字识别(三)—灰度化和二值化
Java基于opencv实现图像数字识别(三)-灰度化和二值化 一.灰度化 灰度化:在RGB模型中,如果R=G=B时,则彩色表示灰度颜色,其中R=G=B的值叫灰度值:因此,灰度图像每个像素点只需一个字 ...
- Java基于opencv实现图像数字识别(二)—基本流程
Java基于opencv实现图像数字识别(二)-基本流程 做一个项目之前呢,我们应该有一个总体把握,或者是进度条:来一步步的督促着我们来完成这个项目,在我们正式开始前呢,我们先讨论下流程. 我做的主要 ...
- Java基于opencv实现图像数字识别(一)
Java基于opencv实现图像数字识别(一) 最近分到了一个任务,要做数字识别,我分配到的任务是把数字一个个的分开:当时一脸懵逼,直接百度java如何分割图片中的数字,然后就百度到了用Buffere ...
- 利用CNN进行流量识别 本质上就是将流量视作一个图像
from:https://netsec2018.files.wordpress.com/2017/12/e6b7b1e5baa6e5ada6e4b9a0e59ca8e7bd91e7bb9ce5ae89 ...
- 【从零学习openCV】IOS7人脸识别实战
前言 接着上篇<IOS7下的人脸检測>,我们顺藤摸瓜的学习怎样在IOS7下用openCV的进行人脸识别,实际上非常easy,因为人脸检測部分已经完毕,剩下的无非调用openCV的方法对採集 ...
随机推荐
- python中出现 IndentationError:unindent does not match any outer indentation level
python中出现IndentationError:unindent does not match any outer indentation level 今天在网上copy的一段代码,代码很简单,每 ...
- UVaLive 4256 Salesmen (简单DP)
题意:给一个无向连通图,和一个序列,修改尽量少的数,使得相邻两个数要么相等,要么相邻. 析:dp[i][j] 表示第 i 个数改成 j 时满足条件.然后就很容易了. 代码如下: #pragma com ...
- Gridview 每秒刷新数据
<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="WebForm2.aspx. ...
- EasyUI获取所有选中行中的某一列的值
var PointIds=[]; for (var i = 0; i < wPoint_rows.length; i++) { //PointIds.push(wPoint_rows[i][&q ...
- python split 与join
1.string.join (saq):以string 为分隔符,将seq中所有的元素(字符串表示"")合并成一个新的字符串 2.string.split(str="&q ...
- Linux运用一些常用命令
今天搜集整理了一些Linux服务器运维常用命令,希望对大家有帮助:1.删除0字节文件 find -type f -size 0 -exec rm -rf {} 2.查看进程按内存从大到小排列 ps - ...
- poj3468(线段树区间更新&区间求和模板)
题目链接: http://poj.org/problem?id=3468 题意: 输入 n, m表初始有 n 个数, 接下来 m 行输入, Q x y 表示询问区间 [x, y]的和: C x y z ...
- git配置命令
一.Git安装及密钥的生成 1.下载Git软件:http://msysgit.github.io/ 2.桌面右键 Git Bash Here 打开git命令行: 3.ssh-keygen -t rsa ...
- Python学习笔记(异常处理)
用户输入了一个不合规定的值,或者需要打开的文件不存在.这些情况被称作“异常”,一个好的程序需要能处理可能发生的异常,避免程序因此而中断. 例如我们去打开一个文件: f = file('non-exis ...
- ajax上传文件及nodeJS接收
ajax文件上传需要用到FormData 官方介绍 FormData对象用以将数据编译成键值对,以便用XMLHttpRequest来发送数据.其主要用于发送表单数据,但亦可用于发送带键数据(keyed ...