[视觉识别]OpenCV + CNN 大神符识别
数据集
Mnist数据集:http://yann.lecun.com/exdb/mnist/
训练
import numpy as np
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense,Activation,Conv2D,MaxPooling2D,Flatten,Dropout,BatchNormalization,ZeroPadding2D
from keras.optimizers import Adam
from keras import backend as K
K.backend()
import tensorflow as tf
import cv2 as cv
import pandas as pd
#加载数据
datas=pd.read_csv("mnist_train.csv")
images=datas.iloc[:,1:].values
x_image=images.astype(np.float)
x_image=np.multiply(x_image,1.0/255.0)
labels=datas.iloc[:,0].values
x_image[0]
labels[0]
#CNN模型加载
def loadCNN():
model = Sequential()
model.add(Conv2D(32,(3,3),padding="valid",input_shape=(28,28,1)))
convout1 = Activation("relu")
model.add(convout1)
model.add(BatchNormalization(epsilon=1e-6,axis=1))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(ZeroPadding2D((1,1)))
model.add(Conv2D(48,(3,3)))
convout2 = Activation("relu")
model.add(convout2)
model.add(BatchNormalization(epsilon=1e-6,axis=1))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Conv2D(64,(2,2)))
convout3 = Activation("relu")
model.add(convout3)
model.add(BatchNormalization(epsilon=1e-6,axis=1))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Dropout(0.5))
model.add(Flatten())
model.add(Dense(3168))
model.add(Activation("relu"))
model.add(Dense(10))
model.add(Activation("softmax"))
model.compile(loss="categorical_crossentropy",optimizer="adam",metrics=['accuracy'])
model.summary()
model.get_config()
return model
#训练加存储
from keras.utils import to_categorical
x_input = x_image.reshape([-1,28,28,1])
y_input = to_categorical(labels, num_classes=10)
print(y_input.shape)
model = loadCNN()
hist = model.fit(x_input,y_input,batch_size = 32,epochs=15,verbose=1, validation_split=0.2)
model.save_weights("model/mnist.hdf5",overwrite=True)
Layer (type) Output Shape Param # ================================================================= conv2d_1 (Conv2D) (None, 26, 26, 32) 320 _________________________________________________________________ activation_1 (Activation) (None, 26, 26, 32) 0 _________________________________________________________________ batch_normalization_1 (Batch (None, 26, 26, 32) 104 _________________________________________________________________ max_pooling2d_1 (MaxPooling2 (None, 13, 13, 32) 0 _________________________________________________________________ zero_padding2d_1 (ZeroPaddin (None, 15, 15, 32) 0 _________________________________________________________________ conv2d_2 (Conv2D) (None, 13, 13, 48) 13872 _________________________________________________________________ activation_2 (Activation) (None, 13, 13, 48) 0 _________________________________________________________________ batch_normalization_2 (Batch (None, 13, 13, 48) 52 _________________________________________________________________ max_pooling2d_2 (MaxPooling2 (None, 6, 6, 48) 0 _________________________________________________________________ conv2d_3 (Conv2D) (None, 5, 5, 64) 12352 _________________________________________________________________ activation_3 (Activation) (None, 5, 5, 64) 0 _________________________________________________________________ batch_normalization_3 (Batch (None, 5, 5, 64) 20 _________________________________________________________________ max_pooling2d_3 (MaxPooling2 (None, 2, 2, 64) 0 _________________________________________________________________ dropout_1 (Dropout) (None, 2, 2, 64) 0 _________________________________________________________________ flatten_1 (Flatten) (None, 256) 0 _________________________________________________________________ dense_1 (Dense) (None, 3168) 814176 _________________________________________________________________ activation_4 (Activation) (None, 3168) 0 _________________________________________________________________ dense_2 (Dense) (None, 10) 31690 _________________________________________________________________ activation_5 (Activation) (None, 10) 0 ================================================================= Total params: 872,586 Trainable params: 872,498 Non-trainable params: 88 _________________________________________________________________ Train on 47999 samples, validate on 12000 samples Epoch 1/15 47999/47999 [==============================] - 1641s 34ms/step - loss: 0.2381 - acc: 0.9250 - val_loss: 0.0724 - val_acc: 0.9762 Epoch 2/15 47999/47999 [==============================] - 1634s 34ms/step - loss: 0.1009 - acc: 0.9693 - val_loss: 0.0486 - val_acc: 0.9852 Epoch 3/15 47999/47999 [==============================] - 1626s 34ms/step - loss: 0.0787 - acc: 0.9768 - val_loss: 0.0472 - val_acc: 0.9863 Epoch 4/15 47999/47999 [==============================] - 1619s 34ms/step - loss: 0.0623 - acc: 0.9805 - val_loss: 0.0358 - val_acc: 0.9892 Epoch 5/15 47999/47999 [==============================] - 1627s 34ms/step - loss: 0.0568 - acc: 0.9829 - val_loss: 0.0427 - val_acc: 0.9878 Epoch 6/15 47999/47999 [==============================] - 1631s 34ms/step - loss: 0.0496 - acc: 0.9847 - val_loss: 0.0355 - val_acc: 0.9908 Epoch 7/15 47999/47999 [==============================] - 1626s 34ms/step - loss: 0.0430 - acc: 0.9871 - val_loss: 0.0284 - val_acc: 0.9922 Epoch 8/15 47999/47999 [==============================] - 1632s 34ms/step - loss: 0.0390 - acc: 0.9877 - val_loss: 0.0269 - val_acc: 0.9922 Epoch 9/15 47999/47999 [==============================] - 1632s 34ms/step - loss: 0.0363 - acc: 0.9886 - val_loss: 0.0341 - val_acc: 0.9904 Epoch 10/15 47999/47999 [==============================] - 1634s 34ms/step - loss: 0.0315 - acc: 0.9896 - val_loss: 0.0321 - val_acc: 0.9908 Epoch 11/15 47999/47999 [==============================] - 1626s 34ms/step - loss: 0.0301 - acc: 0.9907 - val_loss: 0.0325 - val_acc: 0.9912 Epoch 12/15 47999/47999 [==============================] - 1638s 34ms/step - loss: 0.0284 - acc: 0.9906 - val_loss: 0.0280 - val_acc: 0.9928 Epoch 13/15 47999/47999 [==============================] - 1635s 34ms/step - loss: 0.0261 - acc: 0.9920 - val_loss: 0.0313 - val_acc: 0.9919 Epoch 14/15 47999/47999 [==============================] - 1642s 34ms/step - loss: 0.0246 - acc: 0.9923 - val_loss: 0.0246 - val_acc: 0.9935 Epoch 15/15 47999/47999 [==============================] - 1639s 34ms/step - loss: 0.0228 - acc: 0.9926 - val_loss: 0.0288 - val_acc: 0.9922
测试
def test():
model = loadCNN()
model.load_weights("model/mnist.hdf5")
cap = cv.VideoCapture("test.wmv")
while(cap.isOpened()):
ret,frame = cap.read()
img = draw(model,frame)
cv.imshow(",img)
if cv.waitKey(1) == 27:
break
cap.release()
cv.destroyAllWindows()
def draw(model,img):
kernel = np.ones((3,3),np.uint8)
gray = cv.cvtColor(img,cv.COLOR_BGR2GRAY)
lower_hsv = np.array([0,0,223])
upper_hsv = np.array([198,38,255])
ROI = cv.cvtColor(img,cv.COLOR_BGR2HSV)
frame = cv.inRange(ROI,lower_hsv,upper_hsv)
image,contours, hierarchy= cv.findContours(frame,cv.RETR_LIST,cv.CHAIN_APPROX_SIMPLE)
i=0
for contour in contours:
if len(contour) >3:
x,y,w,h = cv.boundingRect(contour)
if w/h>=1.35 and w>15 and h >20 and w <=45:
#print(x,y,w,h)
p_img = gray[y:y+h, x+w//2-h//2:x+w//2+h//2]
p_img = cv.erode(p_img,kernel)
p_img = cv.resize(p_img,(28,28),interpolation= cv.INTER_LINEAR)
ph,pw = p_img.shape
for hx in range(ph):
for wy in range(pw):
p_img[hx][wy] = 255- p_img[hx][wy]
p_img = np.array(p_img,'f')
p_img = p_img/ 255.0
p_img = p_img.reshape([-1,28,28,1])
pdt = np.argmax(model.predict(p_img))
cv.putText(img,str(pdt),(x,y),cv.FONT_HERSHEY_COMPLEX,0.8,(0,0,255),1)
####这里用来判断
#print(x,y,w,h)
#cv.rectangle(img, (x+ w//2-h//2,y), (x+w//2+h//2, y + h), (0, 0, 225), 3)
#cv.drawContours(img, contours, -1, (0, 0, 255), 3)
#print(i)
return img
test()

[视觉识别]OpenCV + CNN 大神符识别的更多相关文章
- OPENCV条形码检测与识别
条形码是当前超市和部分工厂使用比较普遍的物品,产品标识技术,使用摄像头检测一张图片的条形码包含有两个步骤,第一是定位条形码的位置,定位之后剪切出条形码,并且识别出条形码对应的字符串,然后就可以调用网络 ...
- Java基于opencv实现图像数字识别(五)—投影法分割字符
Java基于opencv实现图像数字识别(五)-投影法分割字符 水平投影法 1.水平投影法就是先用一个数组统计出图像每行黑色像素点的个数(二值化的图像): 2.选出一个最优的阀值,根据比这个阀值大或小 ...
- Java基于opencv实现图像数字识别(四)—图像降噪
Java基于opencv实现图像数字识别(四)-图像降噪 我们每一步的工作都是基于前一步的,我们先把我们前面的几个函数封装成一个工具类,以后我们所有的函数都基于这个工具类 这个工具类呢,就一个成员变量 ...
- 手把手教你使用LabVIEW OpenCV dnn实现物体识别(Object Detection)含源码
前言 今天和大家一起分享如何使用LabVIEW调用pb模型实现物体识别,本博客中使用的智能工具包可到主页置顶博客LabVIEW AI视觉工具包(非NI Vision)下载与安装教程中下载 一.物体识别 ...
- Java基于opencv实现图像数字识别(三)—灰度化和二值化
Java基于opencv实现图像数字识别(三)-灰度化和二值化 一.灰度化 灰度化:在RGB模型中,如果R=G=B时,则彩色表示灰度颜色,其中R=G=B的值叫灰度值:因此,灰度图像每个像素点只需一个字 ...
- Java基于opencv实现图像数字识别(二)—基本流程
Java基于opencv实现图像数字识别(二)-基本流程 做一个项目之前呢,我们应该有一个总体把握,或者是进度条:来一步步的督促着我们来完成这个项目,在我们正式开始前呢,我们先讨论下流程. 我做的主要 ...
- Java基于opencv实现图像数字识别(一)
Java基于opencv实现图像数字识别(一) 最近分到了一个任务,要做数字识别,我分配到的任务是把数字一个个的分开:当时一脸懵逼,直接百度java如何分割图片中的数字,然后就百度到了用Buffere ...
- 利用CNN进行流量识别 本质上就是将流量视作一个图像
from:https://netsec2018.files.wordpress.com/2017/12/e6b7b1e5baa6e5ada6e4b9a0e59ca8e7bd91e7bb9ce5ae89 ...
- 【从零学习openCV】IOS7人脸识别实战
前言 接着上篇<IOS7下的人脸检測>,我们顺藤摸瓜的学习怎样在IOS7下用openCV的进行人脸识别,实际上非常easy,因为人脸检測部分已经完毕,剩下的无非调用openCV的方法对採集 ...
随机推荐
- 7.12实习培训日志 Linux Docker
Linux 管理 RHEL7 的用户和组 用户的属性修改 chage -l [username] #查看用户信息 usermod --expiredate=YYYY-MM-DD [username] ...
- Debian系统下的ftp服务搭建
安装vsftpd服务 $ sudo apt install vsftpd 配置参数 命令输入 $ vim /etc/vsftpd.conf 使用如下配置 # Example config file / ...
- 使用Maven构建Spring Security应用
1.概述 本文将解释如何使用Maven构建Spring Security应用程序.将讨论使用Spring Security依赖项的特定用例.最新的Spring Security版本可以在Maven C ...
- 如何让div中的span垂直居中 ----height:100%设置div的高度
如果div中只有一个span一个元素,可以使用line-height.如果div中还有其他元素,可以设置span的css如下: .span{ position: absolute; top: 50%; ...
- Codeforces617E【莫队算法+前缀异或】
题意: 给出一系列数,对每个查询区间,计算有多少个子区间异或为k. 思路: 可以先预处理异或前缀,一个区间[L,R]的异或值=sum[R]^sum[L-1]; 如果当前区间是[a,b],加一个右端点b ...
- Linux下查看磁盘剩余空间和文件夹大小
1. du -sh 查看当前文件夹大小 2. du -sh * | sort -n 列出当前文件夹下的所有文件夹及其大小,并按照文件夹大小排序 du - sh * //查看当前文件夹下所有文件的大小 ...
- CentOS6.5安装sqlite3[转]
1.下载安装包:https://www.sqlite.org/download.html 2.解压 [root@mycentos ~]# tar xzvf sqlite-snapshot-201809 ...
- linux 查看系统版本号(转)
一.查看Linux内核版本命令(两种方法): 1.cat /proc/version [root@localhost ~]# cat /proc/versionLinux version 2.6.18 ...
- 整理的各种模板 (随时弃坑emmmmm)
线段树: #include<iostream> #include<cstdio> #include<algorithm> #include<cmath> ...
- iphone状态栏,导航栏,标签栏高度一览表
iphone状态栏,导航栏,标签栏高度一览表 设备分辨率 状态栏高度 导航栏高度 标签栏高度 iPhone6 plus 1242×2208 px 60px 132px 147px iPhon ...