Tro

【问题描述】

平面上有N个点. 求出所有以这N个点为顶点的三角形的面积和 N<=3000

【输入格式】

第一行给出数字N,N在[3,3000] 下面N行给出N个点的坐标,其值在[0,10000]

【输出格式】

保留一位小数,误差不超过0.1

【样例输入】

5
0 0
1 2
0 2
1 0
1 1

【样例输出】

7.0


题解:

叉积之和

我们以每个点为原点,维护前缀和

为了保证夹角不超过π,先按水平序排序

为了保证面积都是正值,按极角序排序

 #include<cmath>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
struct point
{
long long x, y;
friend inline long long operator * (point a, point b)
{
return a.x * b.y - a.y * b.x;
}
friend inline point operator - (point a, point b)
{
return (point) {a.x - b.x, a.y - b.y};
}
inline void empty()
{
x = y = ;
}
};
point operator + (point a, point b)
{
point c;
c.x = a.x + b.x;
c.y = b.y + b.y;
return c;
}
const int maxn = ;
int n;
point p[maxn];
inline bool lev(point a, point b)
{
if(a.y != b.y) return a.y < b.y;
return a.x < b.x;
} int num;
point np[maxn];
inline bool ang(point a, point b)
{
return a * b > ;
}
point sum;
long long ans;
int main()
{
scanf("%d", &n);
for(int i = ; i <= n; ++i) scanf("%lld %lld", &p[i].x, &p[i].y);
sort(p + , p + + n, lev);
for(int k = ; k <= n; ++k)
{
num = ;
for(int i = k + ; i <= n; ++i) np[++num] = p[i] - p[k];
sort(np + , np + + num, ang);
sum.empty();
for(int i = ; i <= num; ++i)
{
ans += sum * np[i];
sum.x += np[i].x;
sum.y += np[i].y;
}
}
printf("%lld.%d", ans >> , (ans & ) ? : );
}

BZOJ 1132 Tro的更多相关文章

  1. [POI 2008][BZOJ 1132]Tro

    这题我真是无能为力了 这题的做法还是挺简单的 枚举左下角的点做为原点,把其余点按极角排序    PS.是作为原点,如枚举到 k 时,对于所有 p[i] (包括p[k]) p[i]-=p[k] (此处为 ...

  2. BZOJ.1132.[POI2008]Tro(极角排序)

    BZOJ 洛谷 考虑暴力,每次枚举三个点,答案就是\(\frac12\sum_{k<j<i}(i-k)\times(j-k)\). 注意到叉积有分配率,所以固定\(k\),枚举\(i,j\ ...

  3. bzoj 1132 [POI2008]Tro 几何

    [POI2008]Tro Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 1796  Solved: 604[Submit][Status][Discu ...

  4. BZOJ 1132 [POI2008]Tro(极角排序)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1132 [题目大意] 平面上有N个点. 求出所有以这N个点为顶点的三角形的面积和(N&l ...

  5. bzoj 1132 POI2008 Tro

    大水题=_=,可我想复杂了…… 很裸的暴力,就是加了个小优化…… 叉积求面积 :abs(xi*yj - yi*xj) 所以去掉绝对值,把 xi 和 xj 提出来就可以求和了 去绝对值加个极角排序,每次 ...

  6. 【刷题】BZOJ 1132 [POI2008]Tro

    Description 平面上有N个点. 求出所有以这N个点为顶点的三角形的面积和 N<=3000 Input 第一行给出数字N,N在[3,3000] 下面N行给出N个点的坐标,其值在[0,10 ...

  7. bzoj 1132: [POI2008]Tro 计算几何

    题目大意: 平面上有N个点. 求出所有以这N个点为顶点的三角形的面积和 N<=3000 题解 我们看到了n的范围,于是我们就知道这一定不是一个线性算法 所以我们尝试枚举三角形的一个点,那么我们现 ...

  8. bzoj 1132 几何

    思路:我刚开始算三角形的方法是原点叉积三条边,然后计算每条边向量积的贡献,但是对于同一条线上的点 有时候没有办法抵消掉..... 看网上的思路是对于一个三角形的面积通过两条边的叉积获得,然后枚举一个点 ...

  9. 【BZOJ】1132: [POI2008]Tro

    题意 给\(n(1 \le n \le 3000)\)个点,求所有三角形的面积和. 分析 首先枚举一个点,发现把其它点按照关于这个点的极角排序后第\(i\)个点关于前面\(1\)到\(i-1\)的点组 ...

随机推荐

  1. 新装Ubuntu后的一些配置

    一:Ubuntu 16.04 开启root用户和使用root用户登陆 1. 编辑/etc/lightdm/lightdm.conf autologin-guest=false autologin-us ...

  2. mybatis的环境搭建

    mybatis是一个持久层框架,其主要思想就是想将程序中大量的SQL语句剥离出来,配置在配置文件中,实现SQL的灵活配置. 使得SQL与程序代码分离,即在不修改程序代码的情况下,直接在配置文件中修改S ...

  3. [基础学习]MySQL常用语句命令总结

    前言 相信平时大家在开发时都会使用MySQL数据库,它是目前比较火的一款数据库工具,对于大多数企业的业务来说,MySQL可以很完美地支持了. 很多时候我们都是借助mysql可视化工具操作mysql,虽 ...

  4. 理解 Objective-c "属性"

    理解 Objective-c "属性" @property 是OC中能够快速定义一个属性的关键字,如下我们定义一个属性. @property NSString *String; 这 ...

  5. STM32串口中断实例二

    int main(void) { uint8_t a=;//LED高低电压控制 /* System Clocks Configuration */ RCC_Configuration(); //系统时 ...

  6. TS各个表 与 SECTION 的解析 CAS原理

    TS流,通过一个个的TS包来传送: TS包可以是传送PSI SI等各表的数据包,也可以是传送节目音视频数据(携带的PES包:音视频基本流包)的包:TS携带 PSI SI等表的数据时,各个表以各表对应的 ...

  7. 4 Template层-CSRF

    1.csrf 全称Cross Site Request Forgery,跨站请求伪造 某些恶意网站上包含链接.表单按钮或者JavaScript,它们会利用登录过的用户在浏览器中的认证信息试图在你的网站 ...

  8. Go语言之并发编程(二)

    通道(channel) 单纯地将函数并发执行是没有意义的.函数与函数间需要交换数据才能体现并发执行函数的意义.虽然可以使用共享内存进行数据交换,但是共享内存在不同的goroutine中容易发生竞态问题 ...

  9. 03012_会话技术Cookie&Session

    1.会话技术简介 (1)存储客户端的技术 网站的购物系统,用户将购买的商品信息存储到哪里?因为Http协议是无状态的,也就是说每个客户访问服务器端资源时,服务器并不知道该客户端是谁,所以需要会话技术识 ...

  10. models管理类抽取基类

    Models类 models.py # coding:utf-8 from django.db import models from db.Base_model import Base_Model f ...