Tower Defense

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 132768/132768 K (Java/Others)
Total Submission(s): 1025    Accepted Submission(s): 297

Problem Description
  DRD loves playing computer games, especially Tower Defense games. Tower Defense is a famous computer game with a number of variations. In general, you are to build some defense towers to guard your territory in this game. 
  However, in most Tower Defense games, your defending towers will not attack each other. You will see the shells flying through your towers and finally hit the target on your screen. DRD thinks it to be absurd, and he designed a new tower defense game.
  In DRD’s game, you have two kinds of defending tower, heavy tower and light tower. You can put the tower on a grid with N rows and M columns and each cell in the grid can hold one tower at most. Both two kinds of towers can attack the cells in the same column or the same row as it is located in, and your towers may attack each other. Moreover, light towers should not be attacked by other towers while heavy towers can be attacked by at most one other tower.
  You can put some of your towers (at least one tower) in the grid to build a tower formation satisfying the restriction above. And now, DRD wants you to calculate that how many different tower formations could be designed. Note that all the towers of the same type are considered to be identical. While the answer could be quite large, you should output the number mod (109 + 7).
 
Input
  There are multiple test cases in the input. The first line of the input file is an integer T demonstrating the number of test cases. (0< T<= 200).
  For each test case, there is only one line containing 4 integers, N, M, P and Q ,meaning that the grid has N rows and M columns, and you have P heavy towers and Q light towers. You do not have to put all the towers in the grid. (1 <= N, M <= 200, 0 <= P, Q <= 200)
 
Output
  For each test case, output the number of different formations mod (109 + 7) in a single line.
 
Sample Input
3
2 2 0 1
2 2 2 0
3 3 2 1
 
Sample Output
4
10
144
 
Source
 
Recommend
We have carefully selected several similar problems for you:  6010 6009 6008 6007 6006 

分析:

因为重塔有两种放法...其中一种是和轻塔一样的,所以可以视为轻塔...

我们枚举有i行被两个棋子所占,j列被两个棋子所占...那么总占用行数为i+2*j,列数为j+2*i,使用重塔数为(i+j)*2,这个的方案数可以用组合数学搞定:c[n][i]*c[m][i<<1]*(i<<1)!/(2^i)...这是行的算法...列的算法是一样的...c[n][i]*c[m][i<<1]就不用说了...后面的就是我们已经从m列中选出了i*2列,现在我们把这些列分配给i行,第一行选择的方案数是c[i<<1][2],第二行的方案数是c[(i<<1)-2][2],第三行的方案数是c[(i<<1)-4][2]...最后一行的方案数是c[2][2]...化简一下就是(i<<1)!/(2^i)...

然后剩下的n-(i+2*j)行和m-(j+2*i)列中选出k行k列方轻塔和重塔,应该是c[n-(i+2*j)][k]*[m-(j+2*i)][k]*(重塔方案数)...

我们求出重塔的数量范围:Min=max(0,k-q),Max=min(k,p-2*(i+j))...所以重塔的方案数应该是c[k][Max]-c[k][Min-1]...

然后乘起来加一加就好了...

代码:

WA了好久...都是细节...

首先是2^i不能直接1LL<<i,而要预处理...因为i可能等于200...

然后阶乘要预处理到400...

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
//by NeighThorn
#define int long long
using namespace std;
//眉眼如初,岁月如故 const int maxn=400+5,Mod=1e9+7; int n,m,p,q,cas;
long long ans,c[maxn][maxn],po[maxn],fac[maxn],sum[maxn][maxn]; inline long long power(long long x,int y){
long long res=1;
while(y){
if(y&1)
(res*=x)%=Mod;
(x*=x)%=Mod,y>>=1;
}
return res;
} signed main(void){
// freopen("in.txt","r",stdin);
// freopen("out.txt","w",stdout);
scanf("%lld",&cas);c[0][0]=sum[0][0]=1;
for(int i=1;i<=400;i++)
c[i][0]=1,c[i][i]=1,sum[i][0]=1;
for(int i=1;i<=400;i++)
for(int j=1;j<i;j++)
c[i][j]=(c[i-1][j]+c[i-1][j-1])%Mod;
for(int i=1;i<=400;i++)
for(int j=1;j<=i;j++)
sum[i][j]=(sum[i][j-1]+c[i][j])%Mod;
fac[0]=1,po[0]=1;
for(int i=1;i<=400;i++)
fac[i]=fac[i-1]*i%Mod,po[i]=po[i-1]*2%Mod;
while(cas--){
scanf("%lld%lld%lld%lld",&n,&m,&p,&q);ans=0;
for(int i=0;i<=n;i++)
for(int j=0;j<=m;j++)
if(i+2*j<=n&&j+2*i<=m&&2*(i+j)<=p){
long long tmp=c[n][i]*c[m][2*i]%Mod*fac[i<<1]%Mod*power(po[i],Mod-2)%Mod;
(tmp*=c[m-i*2][j]*c[n-i][2*j]%Mod*fac[j<<1]%Mod*power(po[j],Mod-2)%Mod)%=Mod;
long long lala=0LL;
for(int k=0;k<=p-2*(i+j)+q;k++)
if(k<=n-(i+2*j)&&k<=m-(j+2*i)){
int Max=min(k,p-2*(i+j)),Min=max(0LL,k-q);
long long s;
if(Min==0LL)
s=0LL;
else
s=sum[k][Min-1];
(lala+=c[n-(i+2*j)][k]*c[m-(j+2*i)][k]%Mod*fac[k]%Mod*((sum[k][Max]-s+Mod)%Mod)%Mod)%=Mod;
}
(ans+=tmp*lala%Mod)%=Mod;
}
printf("%lld\n",(ans-1+Mod)%Mod);
}
return 0;
}//Cap ou pas cap. Pas cap.

  


By NeighThorn

HDU 4779:Tower Defense的更多相关文章

  1. dp --- hdu 4939 : Stupid Tower Defense

    Stupid Tower Defense Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/ ...

  2. HDU 4939 Stupid Tower Defense(dp)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4939 解题报告:一条长度为n的线路,路上的每个单元格可以部署三种塔来给走在这条路上的敌人造成伤害,第一 ...

  3. HDU 4939 Stupid Tower Defense (2014 Multi-University Training Contest 7)

    思路:首先红色肯定要放在最后面.前面蓝色和绿色dp求解. dp[i][j]  表示前面(i+j) 个 有 i 个蓝色塔  j个绿色塔 能造成最大伤害. //====================== ...

  4. 2014多校第七场1005 || HDU 4939 Stupid Tower Defense (DP)

    题目链接 题意 :长度n单位,从头走到尾,经过每个单位长度需要花费t秒,有三种塔: 红塔 :经过该塔所在单位时,每秒会受到x点伤害. 绿塔 : 经过该塔所在单位之后的每个单位长度时每秒都会经受y点伤害 ...

  5. hdu 4939 Stupid Tower Defense ( dp )

    题目链接 题意:给出一条长为n个单位长度的直线,每通过一个单位长度需要t秒. 有3种塔,红塔可以在当前格子每秒造成x点伤害,绿塔可以在之后的格子每秒造成y点伤害, 蓝塔可以使通过单位长度的时间增加z秒 ...

  6. HDU 4939 Stupid Tower Defense

    dp:枚举red,dp前i 个塔中有j 个蓝塔的最大伤害. 机智的地方:dp前i 个塔的时候可以同时处理n-i 个红塔,这样就少了个循环...(枚举红塔的循环) #include <iostre ...

  7. HDU 4939 Stupid Tower Defense 简单DP

    题意: 地图为长为n个单位长度的直线,每通过一个单位长度需要t秒. 有3种塔,红塔可以在当前格子每秒造成x点伤害,绿塔可以在之后格子造成y点伤害,蓝塔可以使通过单位长度的时间增加z秒. 让你安排塔的排 ...

  8. hdu 4779 Tower Defense (思维+组合数学)

    Tower Defense Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 132768/132768 K (Java/Others) ...

  9. hdu4939 Stupid Tower Defense (DP)

    2014多校7 第二水的题 4939 Stupid Tower Defense Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 131 ...

随机推荐

  1. linux中管道(pipe)一谈

    /*********************************************** 管道(pipe)是Linux上进程间通信的一种方式,其是半双工(数据流只能在一个方向上流动(还需要经过 ...

  2. 第三篇:彻底解决ssh.invoke_shell() 返回的中文问题

    接上一篇,前两篇解决中文的问题主要是在字符集上做的手脚,即将中文转成英文,但是有一种情况我们都来不及做转换,即登录时服务器直接返回了中文内容: 此时程序报了如下错误,其实还是字符集问题: 为此:我们可 ...

  3. Table 分页处理

    介绍两种table分页处理:PHP分页 和 js(jquery.table)分页. 一:jquery.table: 1:下载两个文件:table_jui.css 和 jquery.dataTables ...

  4. JZOJ 3463. 【NOIP2013模拟联考5】军训

    3463. [NOIP2013模拟联考5]军训(training) (Standard IO) Time Limits: 2000 ms  Memory Limits: 262144 KB  Deta ...

  5. jQuery的select2下拉框的搜索功能(使用select2插件,方便简单)

    第一步: 引入我们用使用的插件 jquery: select2: css: js: 第二步: 创建一个html页面,body内容: <div> <select class=" ...

  6. 关于debug

    2019-04-05  11:18:15 1. debug 需巧用两个工具 1.1  用‘#’把感觉会出错的代码段注释掉 多行注释有两种快捷操作: 在需要注释的多行代码块前后加一组三引号''' 选中代 ...

  7. 2016-2017 ACM-ICPC CHINA-Final

    A Gym 101194A Number Theory Problem 7 的二进制是111,2k-1 的二进制是 k 个 1.所以 k 能被 3 整除时 2k-1 才能被 7 整除. #includ ...

  8. Java的内存回收

    一.java引用的种类 1.对象在内存中的状态 可达状态:当一个对象被创建后,有一个以上的引用变量指向它. 可恢复状态: 不可达状态:当对象的所有关联被切断,且系统调用所有对象的finalize方法依 ...

  9. 配置Wampserver和安装thinksns

    一.先安装Wampserver(去官网下载) 二.安装好后单击wampserver图标,Apache->Service->测试80端口,如果显示: i 端口被iis占用 控制面板-> ...

  10. 洛谷P1079 Vigenère 密码

    题目链接:https://www.luogu.org/problemnew/show/P1079