Holding Bin-Laden Captive!

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 21379    Accepted Submission(s): 9486

Problem Description
We all know that Bin-Laden is a notorious terrorist, and he has disappeared for a long time. But recently, it is reported that he hides in Hang Zhou of China! 
“Oh, God! How terrible! ”

Don’t be so afraid, guys. Although he hides in a cave of Hang Zhou, he dares not to go out. Laden is so bored recent years that he fling himself into some math problems, and he said that if anyone can solve his problem, he will give himself up! 
Ha-ha! Obviously, Laden is too proud of his intelligence! But, what is his problem?
“Given some Chinese Coins (硬币) (three kinds-- 1, 2, 5), and their number is num_1, num_2 and num_5 respectively, please output the minimum value that you cannot pay with given coins.”
You, super ACMer, should solve the problem easily, and don’t forget to take $25000000 from Bush!

 
Input
Input contains multiple test cases. Each test case contains 3 positive integers num_1, num_2 and num_5 (0<=num_i<=1000). A test case containing 0 0 0 terminates the input and this test case is not to be processed.
 
Output
Output the minimum positive value that one cannot pay with given coins, one line for one case.
 
Sample Input
1 1 3
0 0 0
 
Sample Output
4
 
Author
lcy
 
Recommend
We have carefully selected several similar problems for you:  1171 1398 1028 2152 2082 

题意:

给出若干枚1元2元和5元硬币,求问最小的无法组成的面值...

分析:

我们可以把它写成生成函数的形式:$f(x)=(1+x+x^{2}+……+x^{a})(1+x^{2}+x^{4}+……+x^{2b})(1+x^{5}+x^{10}+……+x^{5c})$...

对于每一个x项,它的指数代表可以组成的硬币的面值,系数代表方案数...乘起来之后的所有x项的指数就是可以组成的面值...

然后我们可以暴力$O(n^{2})$的计算多项式乘法...因为我们只需要知道指数为x的那一位系数是否为0,所以可以用bitset优化...

但是对于此题来说有一个很机智的做法:感谢@YouSiki...

http://www.cnblogs.com/yousiki/p/6422036.html

代码:

bitset暴力:

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<bitset>
//by NeighThorn
using namespace std; const int maxn=1000+5; bitset<8005> s; int a,b,c,ans; signed main(void){
while(scanf("%d%d%d",&a,&b,&c)){
if(a==0&&b==0&&c==0)
break;
s.reset();
for(int i=0;i<=a;i++)
for(int j=0;j<=b;j++)
s.set(i+j*2);
for(int i=a+b*2;i>=0;i--)
if(s[i])
for(int j=c;j>=0;j--)
s.set(i+j*5);
int ans=1;
while(s[ans]) ans++;
printf("%d\n",ans);
}
return 0;
}

  

机智做法:

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
//by NeighThorn
using namespace std; int a[3],s[3]={1,2,5}; signed main(void){
while(scanf("%d%d%d",&a[0],&a[1],&a[2])){
if(a[0]==0&&a[1]==0&&a[2]==0)
break;
int ans=1;
while(13){
int sum=0;
for(int i=0;i<3;i++)
if(s[i]<=ans)
sum+=s[i]*a[i];
if(sum<ans){
printf("%d\n",ans);
break;
}
else
ans=sum+1;
}
}
return 0;
}

  


By NeighThorn

HDOJ 1085 Holding Bin-Laden Captive!的更多相关文章

  1. HDOJ 1085 Holding Bin-Laden Captive! (母函数)

    Holding Bin-Laden Captive! Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Ja ...

  2. HDOJ/HDU 1085 Holding Bin-Laden Captive!(非母函数求解)

    Problem Description We all know that Bin-Laden is a notorious terrorist, and he has disappeared for ...

  3. HDU 1085 Holding Bin-Laden Captive! (母函数)

    Holding Bin-Laden Captive! Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Ja ...

  4. HDU 1085 Holding Bin-Laden Captive!(母函数,或者找规律)

    Holding Bin-Laden Captive! Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Ja ...

  5. HDU 1085 Holding Bin-Laden Captive!(DP)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1085 解题报告:有1,2,5三种面值的硬币,这三种硬币的数量分别是num_1,num_2,num_5, ...

  6. hdu 1085 Holding Bin-Laden Captive!

    Problem Description We all know that Bin-Laden is a notorious terrorist, and he has disappeared for ...

  7. HDU 1085 Holding Bin-Laden Captive! 活捉本拉登(普通型母函数)

    题意: 有面值分别为1.2.5的硬币,分别有num_1.num_2.num_5个,问不能组成的最小面值是多少?(0<=每种硬币个数<=1000,组成的面值>0) 思路: 母函数解决. ...

  8. HDU 1085 Holding Bin-Laden Captive --生成函数第一题

    生成函数题. 题意:有币值1,2,5的硬币若干,问你最小的不能组成的币值为多少. 解法:写出生成函数: 然后求每项的系数即可. 因为三种硬币最多1000枚,1*1000+2*1000+5*1000=8 ...

  9. hdu 1085 Holding Bin-Laden Captive! (母函数)

    //给你面值为1,2,5的三种硬币固定的数目,求不能凑出的最小钱数 //G(x)=(1+x+...+x^num1)(1+x^2+...+x^2num2)(1+x^5+,,,+x^5num3), //展 ...

随机推荐

  1. nginx 如何配置来获取用户真实IP

  2. Shell脚本使用汇总整理——mysql数据库5.7.8以后备份脚本

    Shell脚本使用汇总整理——mysql数据库5.7.8以后备份脚本 Shell脚本使用的基本知识点汇总详情见连接: https://www.cnblogs.com/lsy-blogs/p/92234 ...

  3. 第三章JavaScript 内置对象

    1 Number 1.1 属性 MAX_VALUE JS可以表示的最大的数字 MIN_VALUE JS可以表示的最小的数字 1.2 方法 toFixed(length) 指定保留长度的小数 toExp ...

  4. web前端使用localstorage、sessionstorage、cookie增删获方法

    今天主要的学习内容是cookie与本地储存的知识, 在HTML5中,本地存储是一个window的属性,包括localStorage和sessionStorage,从名字应该可以很清楚的辨认二者的区别, ...

  5. 使用VUE开发

    <一>VUE的开发分两种,一种是直接在HTML文件中使用,一种是VUE文件的形式开发 1,首先我们先让 HTML 文件支持 VUE 的语法指令提示 2,File -> Setting ...

  6. JZOJ 5835 Prime

    Description

  7. MongDB之各种查询操作

    接口IMongDaoFind: package com.net.test.mongdb.dao; public interface IMongDaoFind { public void findUse ...

  8. Linux多线程总结

    一.Linux线程 进程与线程之间是有区别的,不过Linux内核只提供了轻量进程的支持,未实现线程模型.Linux是一种“多进程单线程”的操作系统.Linux本身只有进程的概念,而其所谓的“线程”本质 ...

  9. secureCRT中vim行号下划线问题

    在vim中发现开启显示行号(set number)或语法高亮(syntax on)时,发现文档中很多地方都有下划线,对视觉产生极大干扰.开始还以为是vim的某个配置造成的,后来发现真正的元凶是secu ...

  10. 笔记-python-变量作用域

    笔记-python-变量作用域 1.      python变量作用域和引用范围 1.1.    变量作用域 一般而言程序的变量并不是任何对象或在任何位置都可以访问的,访问权限决定于这个变量是在哪里赋 ...