HDU 3853 LOOPS 概率DP入门
LOOPS
Time Limit: 15000/5000 MS (Java/Others) Memory Limit: 125536/65536 K (Java/Others)
Total Submission(s): 8453 Accepted Submission(s): 3397
Homura
wants to help her friend Madoka save the world. But because of the plot
of the Boss Incubator, she is trapped in a labyrinth called LOOPS.
The
planform of the LOOPS is a rectangle of R*C grids. There is a portal in
each grid except the exit grid. It costs Homura 2 magic power to use a
portal once. The portal in a grid G(r, c) will send Homura to the grid
below G (grid(r+1, c)), the grid on the right of G (grid(r, c+1)), or
even G itself at respective probability (How evil the Boss Incubator
is)!
At the beginning Homura is in the top left corner of the LOOPS
((1, 1)), and the exit of the labyrinth is in the bottom right corner
((R, C)). Given the probability of transmissions of each portal, your
task is help poor Homura calculate the EXPECT magic power she need to
escape from the LOOPS.
The
following R lines, each contains C*3 real numbers, at 2 decimal places.
Every three numbers make a group. The first, second and third number of
the cth group of line r represent the probability of transportation to
grid (r, c), grid (r, c+1), grid (r+1, c) of the portal in grid (r, c)
respectively. Two groups of numbers are separated by 4 spaces.
It
is ensured that the sum of three numbers in each group is 1, and the
second numbers of the rightmost groups are 0 (as there are no grids on
the right of them) while the third numbers of the downmost groups are 0
(as there are no grids below them).
You may ignore the last three numbers of the input data. They are printed just for looking neat.
The answer is ensured no greater than 1000000.
Terminal at EOF
0.00 0.50 0.50 0.50 0.00 0.50
0.50 0.50 0.00 1.00 0.00 0.00
#include<bits/stdc++.h>
using namespace std;
#define mem(a,b) memset(a,b,sizeof(a))
#define ll long long
#define inf 1000000000
#define maxn 1005
#define maxm 100005
#define eps 1e-10
#define for0(i,n) for(int i=1;i<=(n);++i)
#define for1(i,n) for(int i=1;i<=(n);++i)
#define for2(i,x,y) for(int i=(x);i<=(y);++i)
#define for3(i,x,y) for(int i=(x);i>=(y);--i)
#define mod 1000000007
inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>'') {if(ch=='-') f=-;ch=getchar();}
while(ch>=''&&ch<='') {x=*x+ch-'';ch=getchar();}
return x*f;
}
double dp[maxn][maxn];
double p1[maxn][maxn],p2[maxn][maxn],p3[maxn][maxn];
int main()
{
int r,c;
while(~scanf("%d%d",&r,&c))
{
for(int i=;i<=r;++i)
for(int j=;j<=c;++j)
scanf("%lf%lf%lf",&p1[i][j],&p2[i][j],&p3[i][j]);
mem(dp,);
for(int i=r;i>=;--i)
for(int j=c;j>=;--j)
{
if(i==r&&j==c) continue;
if(p1[i][j]==1.00) continue;
dp[i][j]=(p2[i][j]*dp[i][j+]+p3[i][j]*dp[i+][j]+)/(-p1[i][j]);
}
printf("%.3lf\n",dp[][]);
}
}
HDU 3853 LOOPS 概率DP入门的更多相关文章
- hdu 3853 LOOPS 概率DP
简单的概率DP入门题 代码如下: #include<iostream> #include<stdio.h> #include<algorithm> #include ...
- hdu 3853 LOOPS (概率dp 逆推求期望)
题目链接 LOOPS Time Limit: 15000/5000 MS (Java/Others) Memory Limit: 125536/65536 K (Java/Others)Tota ...
- HDU 3853 LOOPS 期望dp
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3853 LOOPS Time Limit: 15000/5000 MS (Java/Others)Me ...
- HDU 3853 期望概率DP
期望概率DP简单题 从[1,1]点走到[r,c]点,每走一步的代价为2 给出每一个点走相邻位置的概率,共3中方向,不动: [x,y]->[x][y]=p[x][y][0] , 右移:[x][y ...
- LOOPS HDU - 3853 (概率dp):(希望通过该文章梳理自己的式子推导)
题意:就是让你从(1,1)走到(r, c)而且每走一格要花2的能量,有三种走法:1,停住.2,向下走一格.3,向右走一格.问在一个网格中所花的期望值. 首先:先把推导动态规划的基本步骤给出来. · 1 ...
- HDU 3853 LOOP (概率DP求期望)
D - LOOPS Time Limit:5000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Submit St ...
- HDU 3853-loop(概率dp入门)
题意: r*c个方格,从(1,1)开始在每个方格可释放魔法(消耗能量2)以知,释放魔法后可能在原地.可能到达相邻的下面格子或右面格子,给出三者的概率 求要到达(R,C)格子,要消耗能量的期望值. 分析 ...
- HDU 3853 LOOPS 可能性dp(水
在拐~ #include <stdio.h> #include <cstring> #include <iostream> #include <map> ...
- HDU 3853LOOPS(简单概率DP)
HDU 3853 LOOPS 题目大意是说人现在在1,1,需要走到N,N,每次有p1的可能在元位置不变,p2的可能走到右边一格,有p3的可能走到下面一格,问从起点走到终点的期望值 这是弱菜做的第 ...
随机推荐
- SAP销售订单屏幕增强行项目屏幕增强
1.在vbap表中 append一个自定义结构,如下图: 2.TCODE:SE80 程序名:SAPMV45A 屏幕:8459 如图: 3.标记增强的屏幕字段 4.屏幕增强的位置 *& ...
- 转载:jsonp详解
json相信大家都用的多,jsonp我就一直没有机会用到,但也经常看到,只知道是“用来跨域的”,一直不知道具体是个什么东西.今天总算搞明白了.下面一步步来搞清楚jsonp是个什么玩意. 同源策略 首先 ...
- LAMP 搭建练习
目录 LAMP 搭建 1:CentOS 7, lamp (module): http + php + phpMyAdmin + wordpress 192.168.1.7 配置虚拟主机 xcache ...
- 一、Linux 安装
Linux 安装 本章节我们将为大家介绍Linux的安装. 本章节以 centos6.4 为例. centos 下载地址: 可以去官网下载最新版本:https://www.centos.org/dow ...
- PyCharm 2018.1 软件汉化
下载汉化包 链接: https://pan.baidu.com/s/1buLFINImW_3cNzP8HsB4cA 密码: fqpu 安装汉化包 找到pycharm安装目录 直接把刚刚下载的汉化包复制 ...
- FreeRTOS的学习路线
背景 由于之前接触过一些嵌入式RTOS,如Keil-RTX,uCOS-II,也曾经关注过FreeRTOS,但一直没有机会采用FreeRTOS开发.目前FreeRTOS做为主流RTOS,风声正盛.作为嵌 ...
- window.onload和$(docunment).ready的区别
浏览器加载完DOM后,会通过javascript为DOM元素添加事件,在javascript中,通常使用window.onload()方法. 在jquery中,则使用$(document).ready ...
- tcl之变量-数组array
- hprose 1.0(rpc 框架) - 执行时序图
- centos7安装phpstudy
操作系统:CentOS 7 x86_64 SSH登录工具:FinalSHell 2.9.7 一.安装phpstudy 1.下载完整版: wget -c http://lamp.phpstudy.net ...