LOOPS

Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 125536/65536 K (Java/Others)
Total Submission(s): 8453    Accepted Submission(s): 3397

Problem Description
Akemi Homura is a Mahou Shoujo (Puella Magi/Magical Girl).

Homura
wants to help her friend Madoka save the world. But because of the plot
of the Boss Incubator, she is trapped in a labyrinth called LOOPS.

The
planform of the LOOPS is a rectangle of R*C grids. There is a portal in
each grid except the exit grid. It costs Homura 2 magic power to use a
portal once. The portal in a grid G(r, c) will send Homura to the grid
below G (grid(r+1, c)), the grid on the right of G (grid(r, c+1)), or
even G itself at respective probability (How evil the Boss Incubator
is)!
At the beginning Homura is in the top left corner of the LOOPS
((1, 1)), and the exit of the labyrinth is in the bottom right corner
((R, C)). Given the probability of transmissions of each portal, your
task is help poor Homura calculate the EXPECT magic power she need to
escape from the LOOPS.

 



Input
The first line contains two integers R and C (2 <= R, C <= 1000).

The
following R lines, each contains C*3 real numbers, at 2 decimal places.
Every three numbers make a group. The first, second and third number of
the cth group of line r represent the probability of transportation to
grid (r, c), grid (r, c+1), grid (r+1, c) of the portal in grid (r, c)
respectively. Two groups of numbers are separated by 4 spaces.

It
is ensured that the sum of three numbers in each group is 1, and the
second numbers of the rightmost groups are 0 (as there are no grids on
the right of them) while the third numbers of the downmost groups are 0
(as there are no grids below them).

You may ignore the last three numbers of the input data. They are printed just for looking neat.

The answer is ensured no greater than 1000000.

Terminal at EOF

 



Output
A real number at 3 decimal places (round to), representing the expect magic power Homura need to escape from the LOOPS.

 



Sample Input
2 2
0.00 0.50 0.50 0.50 0.00 0.50
0.50 0.50 0.00 1.00 0.00 0.00
 



Sample Output
6.000
概率DP入门,自己推一推公式就odk了。
不过想想队友给别的实验室的孩子出概率DP我就心惊肉跳233333
以及可能写三维的可读性更强。
 #include<bits/stdc++.h>
using namespace std;
#define mem(a,b) memset(a,b,sizeof(a))
#define ll long long
#define inf 1000000000
#define maxn 1005
#define maxm 100005
#define eps 1e-10
#define for0(i,n) for(int i=1;i<=(n);++i)
#define for1(i,n) for(int i=1;i<=(n);++i)
#define for2(i,x,y) for(int i=(x);i<=(y);++i)
#define for3(i,x,y) for(int i=(x);i>=(y);--i)
#define mod 1000000007
inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>'') {if(ch=='-') f=-;ch=getchar();}
while(ch>=''&&ch<='') {x=*x+ch-'';ch=getchar();}
return x*f;
}
double dp[maxn][maxn];
double p1[maxn][maxn],p2[maxn][maxn],p3[maxn][maxn];
int main()
{
int r,c;
while(~scanf("%d%d",&r,&c))
{
for(int i=;i<=r;++i)
for(int j=;j<=c;++j)
scanf("%lf%lf%lf",&p1[i][j],&p2[i][j],&p3[i][j]);
mem(dp,);
for(int i=r;i>=;--i)
for(int j=c;j>=;--j)
{
if(i==r&&j==c) continue;
if(p1[i][j]==1.00) continue;
dp[i][j]=(p2[i][j]*dp[i][j+]+p3[i][j]*dp[i+][j]+)/(-p1[i][j]);
}
printf("%.3lf\n",dp[][]);
}
}

HDU 3853 LOOPS 概率DP入门的更多相关文章

  1. hdu 3853 LOOPS 概率DP

    简单的概率DP入门题 代码如下: #include<iostream> #include<stdio.h> #include<algorithm> #include ...

  2. hdu 3853 LOOPS (概率dp 逆推求期望)

    题目链接 LOOPS Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 125536/65536 K (Java/Others)Tota ...

  3. HDU 3853 LOOPS 期望dp

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3853 LOOPS Time Limit: 15000/5000 MS (Java/Others)Me ...

  4. HDU 3853 期望概率DP

    期望概率DP简单题 从[1,1]点走到[r,c]点,每走一步的代价为2 给出每一个点走相邻位置的概率,共3中方向,不动: [x,y]->[x][y]=p[x][y][0] ,  右移:[x][y ...

  5. LOOPS HDU - 3853 (概率dp):(希望通过该文章梳理自己的式子推导)

    题意:就是让你从(1,1)走到(r, c)而且每走一格要花2的能量,有三种走法:1,停住.2,向下走一格.3,向右走一格.问在一个网格中所花的期望值. 首先:先把推导动态规划的基本步骤给出来. · 1 ...

  6. HDU 3853 LOOP (概率DP求期望)

    D - LOOPS Time Limit:5000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit St ...

  7. HDU 3853-loop(概率dp入门)

    题意: r*c个方格,从(1,1)开始在每个方格可释放魔法(消耗能量2)以知,释放魔法后可能在原地.可能到达相邻的下面格子或右面格子,给出三者的概率 求要到达(R,C)格子,要消耗能量的期望值. 分析 ...

  8. HDU 3853 LOOPS 可能性dp(水

    在拐~ #include <stdio.h> #include <cstring> #include <iostream> #include <map> ...

  9. HDU 3853LOOPS(简单概率DP)

    HDU 3853    LOOPS 题目大意是说人现在在1,1,需要走到N,N,每次有p1的可能在元位置不变,p2的可能走到右边一格,有p3的可能走到下面一格,问从起点走到终点的期望值 这是弱菜做的第 ...

随机推荐

  1. [JZOJ] 5935. 小凯学数学

    由Noip2018初赛的知识得,a|b + a&b = a+b 设计一个区间dp,设\(f[l][r][x]\)表示区间\([l,r]\)能否构成\(x\),数据不大,转移暴力枚举 复杂度\( ...

  2. 第2 章Python 语言基础

    必背必记 1.转义字符   Python 中的字符串还支持转义字符.所谓转义字符是指使用反斜杠“\”对一些特殊字符进行转义. \ 续行符 \n 换行符 \0 空 \t 水平制表符,用于横向跳到下一制表 ...

  3. GPIO实现I2C协议模拟(1)

    最近需要用GPIO模拟I2C协议,如果是在Linux下面比较简单,但在Windows下面,是否有没Linux那么简单了. 索性自己对I2C协议还有一些了解,翻了SPEC并结合示波器量出的实际信号分析, ...

  4. Linux更改文件权限(一)

    更改文件权限(一)============================== (参考于千锋教育教学笔记) 设置权限 1.更改文件的属主.属组chown (change owner)[root@ami ...

  5. ES6 的解构赋值前每次都创建一个对象吗?会加重 GC 的负担吗?

    本文来源于知乎上的一个提问. 为了程序的易读性,我们会使用 ES6 的解构赋值: function f({a,b}){} f({a:1,b:2}); 这个例子的函数调用中,会真的产生一个对象吗?如果会 ...

  6. 【函数应用】PHP中关于URL的函数处理

    一,函数介绍 1.解析HTTP头信息:get_header() array get_headers ( string 目标URL [, int $format = 0 [如果将可选的 format 参 ...

  7. Yii 2.x html 代码压缩

    <?php namespace Pangu\web; use yii\base\Component; /** * html格式响应内容格式化 * @author zhouzhian * */ c ...

  8. 【N-Quens II】cpp

    题目: Follow up for N-Queens problem. Now, instead outputting board configurations, return the total n ...

  9. [19/02/23]ToolsShare 工具分享 VPNTethering Android (Root Required)

    To be short, VPN Tethering is a quite useful tool when you want to share your private network with s ...

  10. 为 rails 本地项目搭建 elasticsearch 服务

    首先安装 elasticsearch 服务 OSX 系统 brew install elasticsearch brew services start elasticsearch 测试服务是否启动浏览 ...