LOOPS

Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 125536/65536 K (Java/Others)
Total Submission(s): 8453    Accepted Submission(s): 3397

Problem Description
Akemi Homura is a Mahou Shoujo (Puella Magi/Magical Girl).

Homura
wants to help her friend Madoka save the world. But because of the plot
of the Boss Incubator, she is trapped in a labyrinth called LOOPS.

The
planform of the LOOPS is a rectangle of R*C grids. There is a portal in
each grid except the exit grid. It costs Homura 2 magic power to use a
portal once. The portal in a grid G(r, c) will send Homura to the grid
below G (grid(r+1, c)), the grid on the right of G (grid(r, c+1)), or
even G itself at respective probability (How evil the Boss Incubator
is)!
At the beginning Homura is in the top left corner of the LOOPS
((1, 1)), and the exit of the labyrinth is in the bottom right corner
((R, C)). Given the probability of transmissions of each portal, your
task is help poor Homura calculate the EXPECT magic power she need to
escape from the LOOPS.

 



Input
The first line contains two integers R and C (2 <= R, C <= 1000).

The
following R lines, each contains C*3 real numbers, at 2 decimal places.
Every three numbers make a group. The first, second and third number of
the cth group of line r represent the probability of transportation to
grid (r, c), grid (r, c+1), grid (r+1, c) of the portal in grid (r, c)
respectively. Two groups of numbers are separated by 4 spaces.

It
is ensured that the sum of three numbers in each group is 1, and the
second numbers of the rightmost groups are 0 (as there are no grids on
the right of them) while the third numbers of the downmost groups are 0
(as there are no grids below them).

You may ignore the last three numbers of the input data. They are printed just for looking neat.

The answer is ensured no greater than 1000000.

Terminal at EOF

 



Output
A real number at 3 decimal places (round to), representing the expect magic power Homura need to escape from the LOOPS.

 



Sample Input
2 2
0.00 0.50 0.50 0.50 0.00 0.50
0.50 0.50 0.00 1.00 0.00 0.00
 



Sample Output
6.000
概率DP入门,自己推一推公式就odk了。
不过想想队友给别的实验室的孩子出概率DP我就心惊肉跳233333
以及可能写三维的可读性更强。
 #include<bits/stdc++.h>
using namespace std;
#define mem(a,b) memset(a,b,sizeof(a))
#define ll long long
#define inf 1000000000
#define maxn 1005
#define maxm 100005
#define eps 1e-10
#define for0(i,n) for(int i=1;i<=(n);++i)
#define for1(i,n) for(int i=1;i<=(n);++i)
#define for2(i,x,y) for(int i=(x);i<=(y);++i)
#define for3(i,x,y) for(int i=(x);i>=(y);--i)
#define mod 1000000007
inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>'') {if(ch=='-') f=-;ch=getchar();}
while(ch>=''&&ch<='') {x=*x+ch-'';ch=getchar();}
return x*f;
}
double dp[maxn][maxn];
double p1[maxn][maxn],p2[maxn][maxn],p3[maxn][maxn];
int main()
{
int r,c;
while(~scanf("%d%d",&r,&c))
{
for(int i=;i<=r;++i)
for(int j=;j<=c;++j)
scanf("%lf%lf%lf",&p1[i][j],&p2[i][j],&p3[i][j]);
mem(dp,);
for(int i=r;i>=;--i)
for(int j=c;j>=;--j)
{
if(i==r&&j==c) continue;
if(p1[i][j]==1.00) continue;
dp[i][j]=(p2[i][j]*dp[i][j+]+p3[i][j]*dp[i+][j]+)/(-p1[i][j]);
}
printf("%.3lf\n",dp[][]);
}
}

HDU 3853 LOOPS 概率DP入门的更多相关文章

  1. hdu 3853 LOOPS 概率DP

    简单的概率DP入门题 代码如下: #include<iostream> #include<stdio.h> #include<algorithm> #include ...

  2. hdu 3853 LOOPS (概率dp 逆推求期望)

    题目链接 LOOPS Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 125536/65536 K (Java/Others)Tota ...

  3. HDU 3853 LOOPS 期望dp

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3853 LOOPS Time Limit: 15000/5000 MS (Java/Others)Me ...

  4. HDU 3853 期望概率DP

    期望概率DP简单题 从[1,1]点走到[r,c]点,每走一步的代价为2 给出每一个点走相邻位置的概率,共3中方向,不动: [x,y]->[x][y]=p[x][y][0] ,  右移:[x][y ...

  5. LOOPS HDU - 3853 (概率dp):(希望通过该文章梳理自己的式子推导)

    题意:就是让你从(1,1)走到(r, c)而且每走一格要花2的能量,有三种走法:1,停住.2,向下走一格.3,向右走一格.问在一个网格中所花的期望值. 首先:先把推导动态规划的基本步骤给出来. · 1 ...

  6. HDU 3853 LOOP (概率DP求期望)

    D - LOOPS Time Limit:5000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit St ...

  7. HDU 3853-loop(概率dp入门)

    题意: r*c个方格,从(1,1)开始在每个方格可释放魔法(消耗能量2)以知,释放魔法后可能在原地.可能到达相邻的下面格子或右面格子,给出三者的概率 求要到达(R,C)格子,要消耗能量的期望值. 分析 ...

  8. HDU 3853 LOOPS 可能性dp(水

    在拐~ #include <stdio.h> #include <cstring> #include <iostream> #include <map> ...

  9. HDU 3853LOOPS(简单概率DP)

    HDU 3853    LOOPS 题目大意是说人现在在1,1,需要走到N,N,每次有p1的可能在元位置不变,p2的可能走到右边一格,有p3的可能走到下面一格,问从起点走到终点的期望值 这是弱菜做的第 ...

随机推荐

  1. php中foreach循环遍历二维数组

    最近在用tp3.2框架,在查询的时候用到了select(),这条语句返回的是二维数组,所以在对返回的数据做处理时,遇到了些麻烦,百度了下foreach,终于用foreach解决了数据的筛选问题 (因为 ...

  2. SourceTree 跳过登录注册,直接使用

    SourceTree下载安装后,运行程序会要求你登录或注册账号才能使用, 然而登录或注册基本都收不到服务器的响应 (在国外嘛,安全起见),于是卡在此处无法使用了. 下面就来介绍一下跳过这尴尬环节的方法 ...

  3. Java基础知识:Collection接口

    *本文是最近学习到的知识的记录以及分享,算不上原创. *参考文献见文末. 这篇文章主要讲的是java的Collection接口派生的两个子接口List和Set. 目录 Collection框架 Lis ...

  4. 工具类commons-io的Tailer用来监控文件

    一.前言:在Linux下有使用tail命令 在Commons-io中也提供这种方法 二.他采用的是线程方式来监控文件内容的变化 1.Tailer类(采用线程的方式进行文件的内容变法) 2.Tailer ...

  5. James Bach Rapid Test的感受

    前阶段拜读过James大神的快速测试,英文水平有限,阅读起来有点吃力,虽然想亲自参加大神的培训,一直没有机会,不过阿里牛人参加大神的培训,并总结的不错,现在谈谈自己的感想和看法. 进入测试行业不少年了 ...

  6. 14,UA池和代理池

    今日概要 scrapy下载中间件 UA池 代理池 一,下载中间件(Downloader Middlewares) 位于scrapy引擎和下载器之间的一层组件. - 作用: (1)引擎将请求传递给下载器 ...

  7. 2.使用vue ui命令快速构建应用

    直接在web端新建应用 C:\Users\Hugo> vue ui

  8. Less Css 教程

    http://www.w3cplus.com/css/less,这个东西太吊了!

  9. 9、JS对象 知识总结

    1.对象 <!DOCTYPE html> <html> <body> <script> <!-- 新建对象 --> person=new O ...

  10. java 二叉树递归遍历算法

    //递归中序遍历 public void inorder() { System.out.print("binaryTree递归中序遍历:"); inorderTraverseRec ...