题目链接:

1119 机器人走方格 V2

基准时间限制:1 秒
空间限制:131072 KB 
 
M * N的方格,一个机器人从左上走到右下,只能向右或向下走。有多少种不同的走法?由于方法数量可能很大,只需要输出Mod 10^9 + 7的结果。

 
Input
第1行,2个数M,N,中间用空格隔开。(2 <= m,n <= 1000000)
Output
 
输出走法的数量 Mod 10^9 + 7。
Input示例
2 3
Output示例
3

题意:

中文的就不说了;

思路:

这题用dp的思想是这样的,dp[i][j]=dp[i-1][j]+dp[i][j-1];这种是i,j分别表示i行j列;
我们来转换一下,p[x][j表示第x-j行第j列的方案数,那么p和dp之间的关系是什么样的呢? p[i][j]=dp[i-j-1][j]+dp[i-j][j-1]=p[i-1][j]+p[i-1][j-1];
p[i][j]=p[i-1][j]+p[i-1][j-1];诶?这个东西好熟悉啊啊啊;让我想想在哪见过......
哈哈哈哈,这就是组合数的递推公式啊,Ci,j=Ci-1,j+Ci-1,j-1;
所以答案就是Cn+m-2,n;
然后就是求乘法逆元和快速幂了; AC代码:
#include <bits/stdc++.h>
using namespace std;
const int N=1e6+;
typedef long long ll;
const ll mod=1e9+;
ll dp[*N];
void Iint()
{
dp[]=;
for(int i=;i<=;i++)
{
dp[i]=(dp[i-]*(ll)i)%mod;
}
}
ll n,m;
ll fast_pow(ll a,ll b)//快速幂;
{
ll s=,base=a;
while(b)
{
if(b&)
{
s*=base;
s%=mod;
}
base *= base;
base%=mod;
b=(b>>);
}
return s;
}
int main()
{
Iint();
  while(scanf("%lld%lld",&n,&m)!=EOF)
{
n--;
m--;
ll x=dp[n]*dp[m]%mod;
ll ans=dp[n+m]*fast_pow(x,mod-)%mod;
printf("%lld\n",ans);
} return ;
}

51nod-1119 1119 机器人走方格 V2(组合数学+乘法逆元+快速幂)的更多相关文章

  1. 51nod 1118 机器人走方格 解题思路:动态规划 & 1119 机器人走方格 V2 解题思路:根据杨辉三角转化问题为组合数和求逆元问题

    51nod 1118 机器人走方格: 思路:这是一道简单题,很容易就看出用动态规划扫一遍就可以得到结果, 时间复杂度O(m*n).运算量1000*1000 = 1000000,很明显不会超时. 递推式 ...

  2. 51nod 1119 机器人走方格 V2

    1119 机器人走方格 V2  基准时间限制:1 秒 空间限制:131072 KB 分值: 10 难度:2级算法题  收藏  关注 M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少 ...

  3. 1119 机器人走方格 V2(组合)

    1119 机器人走方格 V2 基准时间限制:1 秒 空间限制:131072 KB 分值: 10 难度:2级算法题 M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少种不同的走法?由于 ...

  4. 1119 机器人走方格 V2

    1119 机器人走方格 V2 基准时间限制:1 秒 空间限制:131072 KB M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少种不同的走法?由于方法数量可能很大,只需要输出Mo ...

  5. 51nod1119 机器人走方格 V2

    终于学到了求组合数的正确姿势 //C(n+m-2,m-1) #include<cstdio> #include<cstring> #include<cctype> ...

  6. 1119 机器人走方格 V2 (组合数学)

    M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少种不同的走法?由于方法数量可能很大,只需要输出Mod 10^9 + 7的结果.   Input 第1行,2个数M,N,中间用空格隔开 ...

  7. 51nod 1119 机器人走方格 V2 【组合数学】

    挺水的但是我好久没写组合数了- 用这样一个思想,在1~m列中,考虑每一列上升几格,相当于把n-1个苹果放进m个篮子里,可以为空,问有几种方案. 这个就是一个组合数学经典问题了,考虑n个苹果放进m个篮子 ...

  8. 51nod_1119:机器人走方格 V2

    题目链接: https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1119 转化成杨辉三角就好辣@_@ #include< ...

  9. [51nod1119]机器人走方格V2

    解题关键: 1.此题用dp的方法可以看出,dp矩阵为杨辉三角,通过总结,可以得出 答案的解为$C_{n + m - 2}^{n - 1}$ 2.此题可用组合数学的思想考虑,总的步数一共有$n+m-2$ ...

随机推荐

  1. 【redis】4.spring boot集成redis,实现数据缓存

    参考地址:https://spring.io/guides/gs/messaging-redis/ ================================================== ...

  2. MySQL的1067错误

    1.打开my.ini文件,找到default-storage-engine=InnoDB这一行,把它改成default-storage-engine=MyISAM.*** my.ini必须为ansi格 ...

  3. iOS -- SpriteKit框架之SKPhysicsBody的移动和连接

      SKPhysicsBody的受力移动 SKPhysicsBody对象不同于SKSpriteNode对象.SKSpriteNode对象可以通过添加动作来进行移动,SKPhysicsBody对象却没有 ...

  4. Mac -- 安装及使用Docker

    安装这三个软件. 有两个安装包:  和  安装完使用挺简的. 更多内容官网查看: https://docs.docker.com/

  5. android中setClickable,setEnabled,setFocusable的含义及区别

    setClickable  设置为true时,表明控件可以点击,如果为false,就不能点击:“点击”适用于鼠标.键盘按键.遥控器等: 注意,setOnClickListener方法会默认把控件的se ...

  6. Keras 最新《面向小数据集构建图像分类模型》

    本文地址:http://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html ...

  7. python(9)- python基础知识刷题

    1.  执行 Python 脚本的两种方式 交互方式:命令行 Windows操作系统下,快捷键cmd,输入“python”启动交互式python解释器. 文件方式:python文件 2.  简述位.字 ...

  8. Python操作MySQL:pymysql和SQLAlchemy

    本篇对于Python操作MySQL主要使用两种方式: 原生模块 pymsql ORM框架 SQLAchemy pymsql pymsql是Python中操作MySQL的模块,其使用方法和MySQLdb ...

  9. 不能hadoop-daemon.sh start datanode, 显示 错误: 找不到或无法加载主类 ”-Djava.library.path=.home.hadoop.apps.hadoop-2.6.4.lib”

    这两行代码是用来解决一个Hadoop,32位和64位不兼容的警告的,(这个警告可以忽略) 这两行加到mini2~min4后, export HADOOP_COMMON_LIB_NATIVE_DIR=$ ...

  10. HDU 1418 抱歉 (欧拉公式)

    [题目链接]:pid=1418">click here~~ [题目大意]: 假设平面上有n个点,而且每一个点至少有2条曲线段和它相连,就是说,每条曲线都是封闭的.同一时候,我们规定: ...