RQNOJ 671 纯洁的买卖:无限背包
题目链接:https://www.rqnoj.cn/problem/671
题意:
ALEJ要通过倒卖东西来赚钱。
现在他有m元经费。
有n种物品供他选择,每种物品数量无限。
第i件物品的买入价为c[i],卖出价为r[i],每卖出一件物品i后,要交c[i]的税。
问:一次买卖之后,经费最多有多少。
题解:
注:(1)“买”和“卖”是有顺序的。
也就是说,收购一件物品所得到的“未来利润”并不能当作现在的经费来用。
(2)“缴税”是在卖东西的时候,收购的时候并不会在经费中扣除税(c[i])。
相当于从“未来利润”中扣除c[i]
表示状态:
dp[i][j] = max wealth(未来利润)
i:考虑到第i种物品
j:当前花的经费
找出答案:
max dp[i][j] - j
如何转移:
无限背包,正着枚举j。
花费为c[i],价值为w[i] - c[i]。
dp[i][j] = max(dp[i-1][j], dp[i-1][j-c[i]] + w[i])
边界条件:
dp[0][0] = m
others = -1
AC Code:
// state expression:
// dp[i][j] = max wealth
// i: considering ith goods
// j: present cost
//
// find the answer:
// max dp[i][j] - j
//
// transferring:
// dp[i][j] = max(dp[i-1][j], dp[i-1][j-c[i]] + w[i])
//
// boundary:
// dp[0][0] = m
// others = -1
#include <iostream>
#include <stdio.h>
#include <string.h>
#define MAX_N 105
#define MAX_M 1000005 using namespace std; int n,m;
int ans;
int c[MAX_N];
int w[MAX_N];
int dp[MAX_M]; void read()
{
cin>>n>>m;
for(int i=;i<n;i++)
{
cin>>c[i]>>w[i];
}
} void solve()
{
ans=m;
memset(dp,-,sizeof(dp));
dp[]=m;
for(int i=;i<n;i++)
{
for(int j=;j<=m;j++)
{
if(j-c[i]>= && dp[j-c[i]]!=-)
{
dp[j]=max(dp[j],dp[j-c[i]]+w[i]-c[i]);
}
ans=max(ans,dp[j]-j);
}
}
} void print()
{
cout<<ans<<endl;
} int main()
{
read();
solve();
print();
}
RQNOJ 671 纯洁的买卖:无限背包的更多相关文章
- BZOJ 1677 [Usaco2005 Jan]Sumsets 求和:dp 无限背包 / 递推【2的幂次方之和】
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1677 题意: 给定n(n <= 10^6),将n分解为2的幂次方之和,问你有多少种方 ...
- UVa 242 Stamps and Envelope Size (无限背包,DP)
题意:信封上最多贴S张邮票.有N个邮票集合,每个集合有不同的面值.问哪个集合的最大连续邮资最 大,输出最大连续邮资和集合元素. 最大连续邮资是用S张以内邮票面值凑1,2,3...到n+1凑不出来了,最 ...
- 背包九讲 附:USACO中的背包问题
附:USACO中的背包问题 USACO是USA Computing Olympiad的简称,它组织了很多面向全球的计算机竞赛活动. USACO Trainng是一个很适合初学者的题库,我认为它的特色是 ...
- [DP之多重背包优化方法]
首先我们看一道有趣的题目 然后这道题很快想到是一个多重背包和无限背包混合体 那么我们就以这道题 来讨论一下多重背包的优化 首先我们看看朴素打法 memset(F,,]=; ;i<=N;i++) ...
- 洛谷P1450 [HAOI2008]硬币购物 背包+容斥
无限背包+容斥? 观察数据范围,可重背包无法通过,假设没有数量限制,利用用无限背包 进行预处理,因为实际硬币数有限,考虑减掉多加的部分 如何减?利用容斥原理,减掉不符合第一枚硬币数的,第二枚,依次类推 ...
- Solution -「洛谷 P4389」付公主的背包
\(\mathcal{Description}\) Link. 容量为 \(n\),\(m\) 种物品的无限背包,求凑出每种容量的方案数,对 \(998244353\) 取模. \(n,m ...
- 【转】ACM训练计划
[转] POJ推荐50题以及ACM训练方案 -- : 转载自 wade_wang 最终编辑 000lzl POJ 推荐50题 第一类 动态规划(至少6题, 和 必做) 和 (可贪心) (稍难) 第二类 ...
- POJ 题目分类(转载)
Log 2016-3-21 网上找的POJ分类,来源已经不清楚了.百度能百度到一大把.贴一份在博客上,鞭策自己刷题,不能偷懒!! 初期: 一.基本算法: (1)枚举. (poj1753,poj2965 ...
- (转)POJ题目分类
初期:一.基本算法: (1)枚举. (poj1753,poj2965) (2)贪心(poj1328,poj2109,poj2586) (3)递归和分治法. (4)递推. ...
随机推荐
- GTD实用指南
以前通过余弦大牛博客接触到了GTD, 后来我自己接触之后呢, 我是非常讨厌GTD的, 因为太功利化了 反人类 我还是比较懒得··· 可是最近事情真的比较多,不得不做GTD了 = = 郁闷! 时间管理 ...
- centos网络配置实例
1.配置DNS vim /etc/resolv.conf nameserver 192.168.0.1 nameserver 8.8.8.8 nameserver 8.8.4.4 2.配置网关 r ...
- 【BIEE】数据透视表格第一列添加序号
现在有这么一个需求,需要在数据透视图的表格前面条件一列序号,作为行号,如下图: 那么实现这个如何实现呢? 只需要在BIEE分析编辑界面,新建一列,然后公式定义为:RCOUNT(RSUM(1)) ,保存 ...
- 【Python】向函数传递任意数量的实参
传递任意数量的实参 有时候,你预先不知道函数需要接受多少个实参,好在Python允许函数从调用语句中收集任意数量的实参 def get_letter(*letters): for i in lette ...
- 怎样替换jar包的指定文件
在做(或修改别人的)项目的时候,可能遇到要修改调用的的jar包内的类属性或方法的问题.在eclipse或是其他的IDE中是无法直接修改的,所以需要一个解压jar-->修改文件-->编译-- ...
- OS开发之旅之App的生命周期【转载】
原文链接 http://www.360doc.com/content/15/0918/14/27799428_499912639.shtml 在iOS App中,入口函数并不在根目录下,而是在“Sup ...
- The Google File System论文拜读
The Google File System Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung Google∗ 摘要 我们设计并实现了谷歌文件系统 ...
- 1-2:CSS3课程入门之结构选择
E:nth-child(n) 表示E父元素中的第n个字节点 p:nth-child(odd){background:red}/*匹配奇数行*/ p:nth-child(even){background ...
- MySQL数据库的常见操作(七)
MySQL数据库的常见操作 1.创建数据库 2.创建重名的数据库以及如何查看警告信息 3.设置数据库的编码方式(默认为utf8) 4.修改和查看数据库的编码方式 5.删除数据库 6.6.删除已经删除了 ...
- Linux - 命令行 管道(Pipelines) 具体解释
命令行 管道(Pipelines) 具体解释 本文地址: http://blog.csdn.net/caroline_wendy/article/details/24249529 管道操作符" ...