BZOJ3144 [Hnoi2013]切糕 【最小割】
题目
输入格式
第一行是三个正整数P,Q,R,表示切糕的长P、 宽Q、高R。第二行有一个非负整数D,表示光滑性要求。接下来是R个P行Q列的矩阵,第z个 矩阵的第x行第y列是v(x,y,z) (1≤x≤P, 1≤y≤Q, 1≤z≤R)。
100%的数据满足P,Q,R≤40,0≤D≤R,且给出的所有的不和谐值不超过1000。
输出格式
仅包含一个整数,表示在合法基础上最小的总不和谐值。
输入样例
2 2 2
1
6 1
6 1
2 6
2 6
输出样例
6
提示
最佳切面的f为f(1,1)=f(2,1)=2,f(1,2)=f(2,2)=1
题解
论一类最小割模型:
有P * Q个纵列,每列选一个点,且相邻纵列之间的点距离不超过D,求选点最小值
我们将每一列所有点向其下一个点连边【这时候多加上额外的一层点】,容量为其权值,这样由最小割,每一类都会选择一条边割去,就意味着选了这条边入度的点
为了满足相邻距离不超过D的限制,我们对(x,y,z)向相邻的(x’,y’,z - D)连边INF,使得在选择(x,y,z)后必须选择(x’,y’,z - D)以上的点,如图
如此建图,跑最大流
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u]; k != -1; k = ed[k].nxt)
#define cls(x) memset(x,0,sizeof(x))
#define p(x,y,z) ((z - 1) * P * Q + (x - 1) * Q + y)
using namespace std;
const int maxn = 100000,maxm = 3000005,INF = 1000000000;
inline int RD(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57) {out = (out << 1) + (out << 3) + c - '0'; c = getchar();}
return out * flag;
}
int P,Q,R,D;
int h[maxn],ne = 0,cur[maxn],d[maxn],vis[maxn],S,T;
struct EDGE{int to,f,nxt;}ed[maxm];
inline void build(int u,int v,int w){
ed[ne] = (EDGE){v,w,h[u]}; h[u] = ne++;
ed[ne] = (EDGE){u,0,h[v]}; h[v] = ne++;
}
bool bfs(){
for (int i = S; i <= T; i++) vis[i] = d[i] = 0;
queue<int> q;
d[S] = 0; vis[S] = true; q.push(S); int u,to;
while (!q.empty()){
u = q.front(); q.pop();
Redge(u) if (ed[k].f && !vis[to = ed[k].to]){
d[to] = d[u] + 1; vis[to] = true; q.push(to);
}
}
return vis[T];
}
int dfs(int u,int minf){
if (u == T || !minf) return minf;
int flow = 0,f,to;
if (cur[u] == -2) cur[u] = h[u];
for (int& k = cur[u]; k != -1; k = ed[k].nxt)
if (d[to = ed[k].to] == d[u] + 1 && (f = dfs(to,min(minf,ed[k].f)))){
ed[k].f -= f; ed[k ^ 1].f += f;
minf -= f; flow += f;
if (!minf) break;
}
return flow;
}
int maxflow(){
int flow = 0;
while (bfs()){
for (int i = S; i <= T; i++) cur[i] = -2;
flow += dfs(S,INF);
}
return flow;
}
int X[4] = {0,0,-1,1},Y[4] = {-1,1,0,0};
int main(){
memset(h,-1,sizeof(h));
P = RD(); Q = RD(); R = RD(); D = RD(); S = 0; T = P * Q * (R + 1) + 1;
int v;
REP(x,P) REP(y,Q) build(S,p(x,y,1),INF),build(p(x,y,R + 1),T,INF);
REP(z,R) REP(x,P) REP(y,Q){
v = RD();
build(p(x,y,z),p(x,y,z + 1),v);
if (z - D > 0){
for (int k = 0; k < 4; k++){
int nx = x + X[k],ny = y + Y[k];
if (nx < 1 || ny < 1 || nx > P || ny > Q) continue;
build(p(x,y,z),p(nx,ny,z - D),INF);
}
}
}
printf("%d",maxflow());
return 0;
}
BZOJ3144 [Hnoi2013]切糕 【最小割】的更多相关文章
- bzoj3144 [HNOI2013]切糕(最小割)
bzoj3144 [HNOI2013]切糕(最小割) bzoj Luogu 题面描述见上 题解时间 一开始我真就把这玩意所说的切面当成了平面来做的 事实上只是说相邻的切点高度差都不超过 $ d $ 对 ...
- BZOJ3144[Hnoi2013]切糕——最小割
题目描述 输入 第一行是三个正整数P,Q,R,表示切糕的长P. 宽Q.高R.第二行有一个非负整数D,表示光滑性要求.接下来是R个P行Q列的矩阵,第z个 矩阵的第x行第y列是v(x,y,z) (1≤x≤ ...
- 【BZOJ3144】[Hnoi2013]切糕 最小割
[BZOJ3144][Hnoi2013]切糕 Description Input 第一行是三个正整数P,Q,R,表示切糕的长P. 宽Q.高R.第二行有一个非负整数D,表示光滑性要求.接下来是R个P行Q ...
- 【BZOJ-3144】切糕 最小割-最大流
3144: [Hnoi2013]切糕 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1261 Solved: 700[Submit][Status] ...
- bzoj 3144: [Hnoi2013]切糕 最小割
3144: [Hnoi2013]切糕 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 681 Solved: 375[Submit][Status] ...
- Luogu P3227 [HNOI2013]切糕 最小割
首先推荐一个写的很好的题解,个人水平有限只能写流水账,还请见谅. 经典的最小割模型,很多人都说这个题是水题,但我还是被卡了=_= 技巧:加边表示限制 在没有距离\(<=d\)的限制时候,我们对每 ...
- bzoj 3144 [Hnoi2013]切糕——最小割
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3144 一根纵轴上切一个点,可以把一根纵轴上的点连成一串来体现.自己的写法是每个点连向前一个点 ...
- BZOJ3144 Hnoi2013 切糕 【网络流】*
BZOJ3144 Hnoi2013 切糕 Description Input 第一行是三个正整数P,Q,R,表示切糕的长P. 宽Q.高R.第二行有一个非负整数D,表示光滑性要求.接下来是R个P行Q列的 ...
- BZOJ3144/LG3227 「HNOI2013」切糕 最小割离散变量模型
问题描述 BZOJ3144 LG3227 还想粘下样例 输入: 2 2 2 1 6 1 6 1 2 6 2 6 输出: 6 题解 关于离散变量模型,我不想再抄一遍,所以: 对于样例,可以建立出这样的图 ...
随机推荐
- C#自减运算符
一.C#自减运算符(--) 自减运算符(--)是将操作数减1. 1. 前缀自减运算符 前缀自减运算符是“先减1,后使用”.它的运算结果是操作数减1之后的值. 例如: --x; // 前缀自减运算符 ...
- MySQL DBA从小白到大神实战
MySQL5.6 For CentOS 6.6 源码编译安装 o1.关闭防火墙o2.配置sysctl.confo3.检查操作系统上是否安装了MySQLo4.下载mysql源码包o5.添加用户和组o6. ...
- react安装极其了解
全局安装react脚手架工具 首先全局进行安装:cnpm install create-react-app -g 查看是否安装完成:create-react-app 创建react项目:create- ...
- ORA-04031: Unable To Allocate 32 Bytes Of Shared Memory
记录一次生产库遇到的4031错误,后来通过调整sga大小将问题解决了 报错信息: ORA-04031: 无法分配 32 字节的共享内存 ("shared pool","s ...
- linux配置邮箱服务
配置邮箱服务Linux常见的邮箱客户端是mail或mutt:服务端有sendmail服务(centos 5).postfix服务(centos 6).这里我们不使用本地的邮件服务,而是使用本地的邮件客 ...
- MVP模式与MVVM模式
1.mvp模式(Model层 Presenter层 View 层) Model层 :数据层(ajax请求) Presenter层:呈现层,view逻辑相关的控制层,控制层可以去调Model去发ajax ...
- h5获取摄像头拍照功能
完整代码展示 <!DOCTYPE html> <head> <title>HTML5 GetUserMedia Demo</title> <met ...
- 设置虚拟机里的Centos7的IP
输入ip查询命名 ip addr 也可以输入 ifconfig查看ip,但此命令会出现3个条目,centos的ip地址是ens33条目中的inet值. 发现 ens33 没有 inet 这个属性,那 ...
- linux shell 单双引号区别
简要总结: 单引号: 可以说是所见即所得:即将单引号内的内容原样输出,或者描述为单引号里面看见的是什么就会输出什么. 双引号: 把双引号内的内容输出出来:如果内容中有命令,变量等,会先把变量,命令解析 ...
- js 实现5秒倒计时后跳转页面
<script type="text/javascript"> function countDown(secs, surl) { var jumpTo = docume ...