BZOJ3144 [Hnoi2013]切糕 【最小割】
题目
输入格式
第一行是三个正整数P,Q,R,表示切糕的长P、 宽Q、高R。第二行有一个非负整数D,表示光滑性要求。接下来是R个P行Q列的矩阵,第z个 矩阵的第x行第y列是v(x,y,z) (1≤x≤P, 1≤y≤Q, 1≤z≤R)。
100%的数据满足P,Q,R≤40,0≤D≤R,且给出的所有的不和谐值不超过1000。
输出格式
仅包含一个整数,表示在合法基础上最小的总不和谐值。
输入样例
2 2 2
1
6 1
6 1
2 6
2 6
输出样例
6
提示
最佳切面的f为f(1,1)=f(2,1)=2,f(1,2)=f(2,2)=1
题解
论一类最小割模型:
有P * Q个纵列,每列选一个点,且相邻纵列之间的点距离不超过D,求选点最小值
我们将每一列所有点向其下一个点连边【这时候多加上额外的一层点】,容量为其权值,这样由最小割,每一类都会选择一条边割去,就意味着选了这条边入度的点
为了满足相邻距离不超过D的限制,我们对(x,y,z)向相邻的(x’,y’,z - D)连边INF,使得在选择(x,y,z)后必须选择(x’,y’,z - D)以上的点,如图
如此建图,跑最大流
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u]; k != -1; k = ed[k].nxt)
#define cls(x) memset(x,0,sizeof(x))
#define p(x,y,z) ((z - 1) * P * Q + (x - 1) * Q + y)
using namespace std;
const int maxn = 100000,maxm = 3000005,INF = 1000000000;
inline int RD(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57) {out = (out << 1) + (out << 3) + c - '0'; c = getchar();}
return out * flag;
}
int P,Q,R,D;
int h[maxn],ne = 0,cur[maxn],d[maxn],vis[maxn],S,T;
struct EDGE{int to,f,nxt;}ed[maxm];
inline void build(int u,int v,int w){
ed[ne] = (EDGE){v,w,h[u]}; h[u] = ne++;
ed[ne] = (EDGE){u,0,h[v]}; h[v] = ne++;
}
bool bfs(){
for (int i = S; i <= T; i++) vis[i] = d[i] = 0;
queue<int> q;
d[S] = 0; vis[S] = true; q.push(S); int u,to;
while (!q.empty()){
u = q.front(); q.pop();
Redge(u) if (ed[k].f && !vis[to = ed[k].to]){
d[to] = d[u] + 1; vis[to] = true; q.push(to);
}
}
return vis[T];
}
int dfs(int u,int minf){
if (u == T || !minf) return minf;
int flow = 0,f,to;
if (cur[u] == -2) cur[u] = h[u];
for (int& k = cur[u]; k != -1; k = ed[k].nxt)
if (d[to = ed[k].to] == d[u] + 1 && (f = dfs(to,min(minf,ed[k].f)))){
ed[k].f -= f; ed[k ^ 1].f += f;
minf -= f; flow += f;
if (!minf) break;
}
return flow;
}
int maxflow(){
int flow = 0;
while (bfs()){
for (int i = S; i <= T; i++) cur[i] = -2;
flow += dfs(S,INF);
}
return flow;
}
int X[4] = {0,0,-1,1},Y[4] = {-1,1,0,0};
int main(){
memset(h,-1,sizeof(h));
P = RD(); Q = RD(); R = RD(); D = RD(); S = 0; T = P * Q * (R + 1) + 1;
int v;
REP(x,P) REP(y,Q) build(S,p(x,y,1),INF),build(p(x,y,R + 1),T,INF);
REP(z,R) REP(x,P) REP(y,Q){
v = RD();
build(p(x,y,z),p(x,y,z + 1),v);
if (z - D > 0){
for (int k = 0; k < 4; k++){
int nx = x + X[k],ny = y + Y[k];
if (nx < 1 || ny < 1 || nx > P || ny > Q) continue;
build(p(x,y,z),p(nx,ny,z - D),INF);
}
}
}
printf("%d",maxflow());
return 0;
}
BZOJ3144 [Hnoi2013]切糕 【最小割】的更多相关文章
- bzoj3144 [HNOI2013]切糕(最小割)
bzoj3144 [HNOI2013]切糕(最小割) bzoj Luogu 题面描述见上 题解时间 一开始我真就把这玩意所说的切面当成了平面来做的 事实上只是说相邻的切点高度差都不超过 $ d $ 对 ...
- BZOJ3144[Hnoi2013]切糕——最小割
题目描述 输入 第一行是三个正整数P,Q,R,表示切糕的长P. 宽Q.高R.第二行有一个非负整数D,表示光滑性要求.接下来是R个P行Q列的矩阵,第z个 矩阵的第x行第y列是v(x,y,z) (1≤x≤ ...
- 【BZOJ3144】[Hnoi2013]切糕 最小割
[BZOJ3144][Hnoi2013]切糕 Description Input 第一行是三个正整数P,Q,R,表示切糕的长P. 宽Q.高R.第二行有一个非负整数D,表示光滑性要求.接下来是R个P行Q ...
- 【BZOJ-3144】切糕 最小割-最大流
3144: [Hnoi2013]切糕 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1261 Solved: 700[Submit][Status] ...
- bzoj 3144: [Hnoi2013]切糕 最小割
3144: [Hnoi2013]切糕 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 681 Solved: 375[Submit][Status] ...
- Luogu P3227 [HNOI2013]切糕 最小割
首先推荐一个写的很好的题解,个人水平有限只能写流水账,还请见谅. 经典的最小割模型,很多人都说这个题是水题,但我还是被卡了=_= 技巧:加边表示限制 在没有距离\(<=d\)的限制时候,我们对每 ...
- bzoj 3144 [Hnoi2013]切糕——最小割
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3144 一根纵轴上切一个点,可以把一根纵轴上的点连成一串来体现.自己的写法是每个点连向前一个点 ...
- BZOJ3144 Hnoi2013 切糕 【网络流】*
BZOJ3144 Hnoi2013 切糕 Description Input 第一行是三个正整数P,Q,R,表示切糕的长P. 宽Q.高R.第二行有一个非负整数D,表示光滑性要求.接下来是R个P行Q列的 ...
- BZOJ3144/LG3227 「HNOI2013」切糕 最小割离散变量模型
问题描述 BZOJ3144 LG3227 还想粘下样例 输入: 2 2 2 1 6 1 6 1 2 6 2 6 输出: 6 题解 关于离散变量模型,我不想再抄一遍,所以: 对于样例,可以建立出这样的图 ...
随机推荐
- 2754: C++习题-快速排序
2754: C++习题-快速排序 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 921 Solved: 406[Submit][Status][Web ...
- Problem D: 双向冒泡排序
Problem D: 双向冒泡排序 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 447 Solved: 197[Submit][Status][We ...
- CXF学习记录
1 apache CXF入门 1.1 下载 官网:cxf.apache.org 下载CXF的开发包: Apache CXF = Celtix + Xfire 支持多种协议: SOAP1.1,1.2 X ...
- C#语句对Access中数据更新问题――Update语法错误
所有字段最好都用[] 括起来: string sqlUpdate = "update UserInfo set [password] = '" + pass + "',[ ...
- java Html&JavaScript面试题:判断第二个日期比第一个日期大
如何用脚本判断用户输入的的字符串是下面的时间格式2004-11-21 必须要保证用户的输入是此格式,并且是时间,比如说月份不大于12等等,另外我需要用户输入两个,并且后一个要比前一个晚,只允许用JAV ...
- 什么是 TCP/IP?
前言: 精通 TCP/IP,熟练使用 Socket 进行网路编程. 看到这句话,有没有感到很熟悉呀?相信很多人在投递简历的时候都看到过这条要求,很多人会觉得我们在实际开发中一般用不到这些知识,所以对这 ...
- 2D和3D效果
<style type="text/css"> #div1{ width: 200px; height: 200px; background-color:#aaa; c ...
- Centos 6版本Device eth0 does not seem to be present,delaying initialization.故障处理
1.1 故障现象 2019年06月14日晚上,公司项目组说有台业务服务器连接不上,比较着急,我通过vpn拨入的方式远程登录到管理控制台查看发现网卡没有获取到IP地址,我尝试重启来重新启动,重启的时候 ...
- Android Studio 安装与使用ADB wifi 无线调试
首先,安装ADB WIFI File->Settings->Plugins 其次,用USB连接手机与电脑(并开启手机的调试模式) 任务栏若无提示,即可拔下USB线,开始无线调试 任务栏若是 ...
- Flask初学者:g对象,hook钩子函数
Flask的g对象 作用:g可以可以看作是单词global的缩写,使用“from flask import g”导入,g对象的作用是保存一些在一次请求中多个地方的都需要用到的数据,这些数据可能在用到的 ...