青蛙的约会
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 104278   Accepted: 20356

Description

两 只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它 们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去, 总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙 是否能够碰面,会在什么时候碰面。
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的
数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。
现在要你求出它们跳了几次以后才会碰面。

Input

输入只包括一行5个整数x,y,m,n,L,其中x≠y < 2000000000,0 < m、n < 2000000000,0 < L < 2100000000。

Output

输出碰面所需要的跳跃次数,如果永远不可能碰面则输出一行"Impossible"

Sample Input

1 2 3 4 5

Sample Output

4

题解:设t次跳跃后想遇,我们可以列出如下式子(x + mt) % L = (y + nt) % L 然后通过化简我们可以得到如下方程 (n-m)*t+k*L = (x-y).然后我们发现这个式子就是扩展欧几
里德,如果gcd(n-m,L)|(x-y)那么此式子有解,如果有解的话 设当前解为 X0,那么式子ax+by=c的通解为 {X0*c/gcd(a,b)+k*b/gcd(a,b)}(k属于整数)。此题的最小
正整数解为 mod =b/gcd(a,b) t=t*(x-y)/gcd(n-m,L); t = (t%mod+mod)%mod.
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <iostream>
using namespace std;
typedef long long LL; LL extend_gcd(LL a,LL b,LL &x,LL &y){
if(!b){
x=,y = ;
return a;
}else{
LL x1,y1;
LL d = extend_gcd(b,a%b,x1,y1);
x = y1;
y = x1 - a/b*y1;
return d;
}
}
int main()
{
LL x,y,m,n,L,t,k;
scanf("%lld%lld%lld%lld%lld",&x,&y,&m,&n,&L);
LL d = extend_gcd(n-m,L,t,k);
if((x-y)%d!=){
printf("Impossible\n");
}
else{
t = t*((x-y)/d);
LL mod = L/d;
printf("%lld\n",(t%mod+mod)%mod);
}
return ;
}

												

poj 1061(线性同余)的更多相关文章

  1. POJ 1745 线性和差取余判断

    POJ 1745 线性和差取余判断 题目大意:每个数都必须取到,相加或相减去,问所有的方案最后的得数中有没有一个方案可以整除k 这个题目的难点在于dp数组的安排上面 其实也就是手动模仿了一下 比如 一 ...

  2. Poj 1061 青蛙的约会(扩展欧几里得解线性同余式)

    一.Description 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要 ...

  3. POJ.1061 青蛙的约会 (拓展欧几里得)

    POJ.1061 青蛙的约会 (拓展欧几里得) 题意分析 我们设两只小青蛙每只都跳了X次,由于他们相遇,可以得出他们同余,则有: 代码总览 #include <iostream> #inc ...

  4. poj 1061 青蛙的约会 (扩展欧几里得模板)

    青蛙的约会 Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I64u Submit Status ...

  5. poj 1061 青蛙的约会 拓展欧几里得模板

    // poj 1061 青蛙的约会 拓展欧几里得模板 // 注意进行exgcd时,保证a,b是正数,最后的答案如果是负数,要加上一个膜 #include <cstdio> #include ...

  6. ACM: POJ 1061 青蛙的约会 -数论专题-扩展欧几里德

    POJ 1061 青蛙的约会 Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%lld & %llu  Descr ...

  7. 扩展欧几里德 POJ 1061

    欧几里德的是来求最大公约数的,扩展欧几里德,基于欧几里德实现了一种扩展,是用来在已知a, b求解一组x,y使得ax+by = Gcd(a, b) =d(解一定存在,根据数论中的相关定理,证明是用裴蜀定 ...

  8. 解密随机数生成器(二)——从java源码看线性同余算法

    Random Java中的Random类生成的是伪随机数,使用的是48-bit的种子,然后调用一个linear congruential formula线性同余方程(Donald Knuth的编程艺术 ...

  9. 数学#扩展欧几里德 POJ 1061&2115&2891

    寒假做的题了,先贴那时写的代码. POJ 1061 #include<iostream> #include<cstdio> typedef long long LL; usin ...

随机推荐

  1. 第2章 CentOS7集群环境配置

    目录 2.1 关闭防火墙 2.2 设置固定IP 2.3 修改主机名 2.4 添加用户 2.5 修改用户权限 2.6 新建目录 2.7 安装JDK 1.卸载系统自带的JDK 2.安装JDK 2.8 克隆 ...

  2. oracle redo 重做日志文件

    以下易容翻译自oracle dba官方文档,不足之处还望指出. 管理重做日志文件 学习目标:1.解释重做日志文件的目的2.描述重做日志文件的结构3.学会控制日志切换与检查点4.多元化管理重做日志文件5 ...

  3. 下载速度更加快的 SourceForge 镜像

    http://www.mirrorservice.org/sites/download.sourceforge.net/pub/sourceforge/是 University of Kent的镜像, ...

  4. Codeforces Round #461 (Div. 2) D. Robot Vacuum Cleaner

    D. Robot Vacuum Cleaner time limit per test 1 second memory limit per test 256 megabytes Problem Des ...

  5. POJ 3041 Asteroids (二分图最小点覆盖集)

    Asteroids Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 24789   Accepted: 13439 Descr ...

  6. 【Edit Distance】cpp

    题目: Given two words word1 and word2, find the minimum number of steps required to convert word1 to w ...

  7. Python Flask构建可拓展的RESTful API

    1-1 Flask VS Django 1-2  课程更新维护说明: 1-3 环境.开发环境与Flask: 1.3.1 关注版本更新说明: 1-4 初始化项目:

  8. hdu5985[概率dp] 2016青岛icpc现场赛

    #include <bits/stdc++.h> using namespace std; ][]; ][]; ][]; ]; ]; int T, n; double fastpow(do ...

  9. 【bzoj3924】[Zjoi2015]幻想乡战略游戏 动态点分治

    题目描述 傲娇少女幽香正在玩一个非常有趣的战略类游戏,本来这个游戏的地图其实还不算太大,幽香还能管得过来,但是不知道为什么现在的网游厂商把游戏的地图越做越大,以至于幽香一眼根本看不过来,更别说和别人打 ...

  10. 【bzoj2721】[Violet 5]樱花 数论

    题目描述 输入 输出 样例输入 2 样例输出 3 题解 数论 设1/x+1/y=1/m,那么xm+ym=xy,所以xy-xm-ym+m^2=m^2,所以(x-m)(y-m)=m^2. 所以解的数量就是 ...