问n! 转化成k进制后的位数和尾数的0的个数。【UVA 10061 How many zeros and how many digits?】

Given a decimal integer number you will have to find out how many trailing zeros will be there in its
factorial in a given number system and also you will have to find how many digits will its factorial have
in a given number system? You can assume that for a b based number system there are b different
symbols to denote values ranging from . . . b − .
Input
There will be several lines of input. Each line makes a block. Each line will contain a decimal number
N (a 20bit unsigned number) and a decimal number B ( < B ≤ ), which is the base of the number
system you have to consider. As for example ! = (in decimal) but it is in hexadecimal number
system. So in Hexadecimal ! has no trailing zeros.
Output
For each line of input output in a single line how many trailing zeros will the factorial of that number
have in the given number system and also how many digits will the factorial of that number have in
that given number system. Separate these two numbers with a single space. You can be sure that the
number of trailing zeros or the number of digits will not be greater than − .
Sample Input Sample Output
#include <stdio.h>
#include <math.h> int cal_digit(int n, int b)
{
int i;
double l;
for (i = , l = ; i <= n; i++)
l += log10(i) / log10(b);
return l + ;
} int cal_zero(int n, int b)
{
int i, d, m, t;
for (i = , d = ; i <= b; i++) {
m = ;
while (b % i == ) {
m++;
d = i;
b /= i;
}
}
for (t = ; n > ; ) {
t += n / d;
n /= d;
}
return t / m;
} int main(void)
{
int n, b;
while (scanf("%d%d", &n, &b) != EOF)
printf("%d %d\n", cal_zero(n, b), cal_digit(n, b));
return ;
}

UVA

n! 在k进制下后缀0的个数。【洛谷 一道中档题】

输入输出格式
输入格式:
每组输入仅包含一行:两个整数n,k。 输出格式:
输出一个整数:n!在k进制下后缀0的个数。 输入输出样例
输入样例#1:
10 40
输出样例#1:
2
说明
对于20%的数据,n <= 1000000, k = 10 对于另外20%的数据,n <= 20, k <= 36 对于100%的数据,n <= 10^12,k <= 10^12

  


给出一个k进制的数n,求n!里一共有多少个0。【ZOJ Factorial Problem in Base K】

https://www.cnblogs.com/linqiuwei/p/3258408.html 【好解释】

先把n转化为10进制下的数。

把n!分解质因数。

把k分解质因数。

求所有的k的质因数中,除以n!的相同质因数中最小的。就是answer。

  

How many zeros are there in the end of s! if both s and s! are written in base k which is not necessarily to be 10? For general base, the digit order is 0-9,A-Z,a-z(increasingly), for example F4 in base 46 is actually 694 in base 10,and f4 in base 46 is 1890 in base 10.

Input
There are multiple cases(less than 10000). Each case is a line containing two integers s and k(0 ≤ s < 2^63, 2 ≤ k ≤ 62). Output
For each case, output a single line containing exactly one integer in base 10 indicating the number of zeros in the end of s!. Sample Input
101 2
12 7
Sample Output
3
1

  

//qscqesze
#include <cstdio>
#include <cmath>
#include <cstring>
#include <ctime>
#include <iostream>
#include <algorithm>
#include <set>
#include <vector>
#include <sstream>
#include <queue>
#include <typeinfo>
#include <fstream>
#include <map>
#include <stack>
typedef long long ll;
using namespace std;
//freopen("D.in","r",stdin);
//freopen("D.out","w",stdout);
#define sspeed ios_base::sync_with_stdio(0);cin.tie(0)
#define test freopen("test.txt","r",stdin)
#define maxn 200001
#define mod 10007
#define eps 1e-9
int Num;
char CH[];
//const int inf=0x7fffffff; //нчоч╢С
const int inf=0x3f3f3f3f;
inline ll read()
{
ll x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
inline void P(int x)
{
Num=;if(!x){putchar('');puts("");return;}
while(x>)CH[++Num]=x%,x/=;
while(Num)putchar(CH[Num--]+);
puts("");
}
//************************************************************************************** string s;
int n;
const int p[]={,,,,,,,,,,,,,,,,,};
int a[];
int main()
{
while(cin>>s>>n)
{
memset(a,,sizeof(a));
ll tmp=;
ll k=;
for(int i=s.size()-;i>=;i--)
{
if(s[i]<=''&&s[i]>='')
tmp+=(s[i]-'')*k;
else if(s[i]<='Z'&&s[i]>='A')
tmp+=(s[i]-'A'+)*k;
else
tmp+=(s[i]-'a'+)*k;
k*=n;
}
for(int i=;i<;i++)
{
while(n%p[i]==&&n>)
{
n/=p[i];
a[i]++;
}
}
ll ans=(1LL<<)-;
for(int i=;i<;i++)
{
ll now=tmp,tot=;
while(now>)
{
now/=p[i];
tot+=now;
}
if(a[i]>)
ans=min(ans,tot/a[i]);
}
printf("%lld\n",ans);
} }

ZOJ

n!在k进制下的后缀0的更多相关文章

  1. 求x!在k进制下后缀零的个数(洛谷月赛T1)

    求x!在k进制下后缀和的个数 20分:     求十进制下的x!后缀和的个数 40分: 高精求阶乘,直接模拟过程 (我不管反正我不打,本蒟蒻最讨厌高精了) 60分     利用一个定理(网上有求x!在 ...

  2. bzoj 3000 Big Number 估算n!在k进制下的位数 斯特林公式

    题目大意 求n!在k进制下的位数 2≤N≤2^31, 2≤K≤200 分析 作为数学没学好的傻嗨,我们先回顾一下log函数 \(\log_a(b)=\frac 1 {log_b(a)}\) \(\lo ...

  3. 51 Nod 1116 K进制下的大数

    1116 K进制下的大数  基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题  收藏  关注 有一个字符串S,记录了一个大数,但不知这个大数是多少进制的,只知道这个数 ...

  4. 陕西师范大学第七届程序设计竞赛网络同步赛 F WWX的礼物【数学/k进制下x^n的位数/log】

    链接:https://www.nowcoder.com/acm/contest/121/F来源:牛客网 题目描述 WWX的女朋友送给了他一个礼物,可是礼物却被一把K进制密码锁锁住了.在礼物盒上还有一张 ...

  5. light oj 1045 - Digits of Factorial K进制下N!的位数

    1045 - Digits of Factorial Factorial of an integer is defined by the following function f(0) = 1 f(n ...

  6. 数位DP 求K进制下0~N的每个数每位上出现的数的总和

    好久没写博客了,因为感觉时间比较紧,另一方面没有心思,做的题目比较浅也是另一方面. 热身赛第二场被血虐了好不好,于是决定看看数位DP吧. 进入正题: 如题是一道经(简)典(单)的数位dp. 第一步,对 ...

  7. [51nod1116]K进制下的大数

    解题关键:$A\% (k - 1) = (A[0] + A[1]*k + A[2]*{k^2} + ...A[n]*{k^n})\% (k - 1) = (A[0] + A[1] + ...A[n]) ...

  8. 51nod 1116 K进制下的大数

    你万万想不到,Long Long 就能存下的数据 #include <iostream> #include <cstdio> #include <cstdlib> ...

  9. 51nod 1116 K进制下的大数 (暴力枚举)

    题目链接 题意:中文题. 题解:暴力枚举. #include <iostream> #include <cstring> using namespace std; ; ; ch ...

随机推荐

  1. [Poj3281]Dining(最大流)

    Description 有n头牛,f种食物,d种饮料,每头牛有nf种喜欢的食物,nd种喜欢的饮料,每种食物如果给一头牛吃了,那么另一个牛就不能吃这种食物了,饮料也同理,问最多有多少头牛可以吃到它喜欢的 ...

  2. 菜鸟学Linux - Linux文件属性

    在Linux中,文件的属性是一个很重要的概念,用户或者用户组对一个文件所拥有的权限,都可以从文件的属性得知. 我们可以通过ls -al命令,列出某个文件夹下面的所有文件(包括以.开头的隐藏文件).下面 ...

  3. synchronized 基本用法

    常见三种使用方式 1)普通同步方法,锁是当前实例:2)静态同步方法,锁是当前类的Class实例,Class数据存在永久代中,是该类的一个全局锁:3)对于同步代码块,锁是synchronized括号里配 ...

  4. 步骤详解安装Apache web服务器

    1.在上右键è安装 安装后apache web服务器自动启动. 在右下角出现. Apache安装之后有一个默认的网站目录 在浏览器上通过网站就可以访问到该目录下的文件. 2.测试 在浏览器输上请求lo ...

  5. 设计模式之第21章-状态模式(Java实现)

    设计模式之第21章-状态模式(Java实现) “what are you 干啥了?怎么这么萎靡不振?”“昨晚又是补新番,又是补小笼包,睡得有点晚啊.话说杨过的那个雕兄真是太好了,每天给找蛇胆,又陪练武 ...

  6. 1、HTML基础总结 part-1

    1.基本标签属性 <html> <!--属性和属性值对大小写不敏感. 不过,万维网联盟在其 HTML 4 推荐标准中推荐小写的属性/属性值. 而新版本的 (X)HTML 要求使用小写 ...

  7. leetcode 【 Best Time to Buy and Sell Stock II 】python 实现

    题目: Say you have an array for which the ith element is the price of a given stock on day i. Design a ...

  8. leetcode 【Search a 2D Matrix 】python 实现

    题目: Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the f ...

  9. Leetcode 649.Dota2参议院

    Dota2参议院 Dota2 的世界里有两个阵营:Radiant(天辉)和 Dire(夜魇) Dota2 参议院由来自两派的参议员组成.现在参议院希望对一个 Dota2 游戏里的改变作出决定.他们以一 ...

  10. Hadoop入门第四篇:手动搭建自己的hadoop小集群

    前言 好几天没有更新了,本来是应该先写HDFS的相关内容,但是考虑到HDFS是我们后面所有学习的基础,而我只是简单的了解了一下而已,后面准备好好整理HDFS再写这块.所以大家在阅读这篇文章之前,请先了 ...