题目大意

在结尾动态插入字符,每次插入结束后输出当前串中本质不同的字串个数

题解

注意一开始是空串,然后我们我们可以打表观察规律

我们发现一直在开头插入字符和一直在结尾插入字符得到的答案是一样的

所以我们从开头插入字符

那么每次我们相于插入了一个后缀

这样就多了n-sa[i]个前缀

但是这些前缀中有重复的

所以我们要在已经插入的后缀中找出与之最长的lcp长度

减去这个长度就是我们得到的不同的字串个数了

由于求lcp时是对height一直取min

所以我们找最长的lcp是只需要找所有已经计算的了后缀中,rank最接近当前加入的后缀的rank的两个后缀即可

复杂度\(O(nlogn)\)

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
inline void read(ll &x){
x=0;char ch;bool flag = false;
while(ch=getchar(),ch<'!');if(ch == '-') ch=getchar(),flag = true;
while(x=10*x+ch-'0',ch=getchar(),ch>'!');if(flag) x=-x;
}
inline ll cat_max(const ll &a,const ll &b){return a>b ? a:b;}
inline ll cat_min(const ll &a,const ll &b){return a<b ? a:b;}
const ll maxn = 100010;
ll wa[maxn],wb[maxn],ws[maxn];
ll rank[maxn],height[maxn],sa[maxn];
inline bool cmp(ll *r,ll i,ll j,ll k){
return r[i] == r[j] && r[i+k] == r[j+k];
}
void da(ll *r,ll n,ll m){
ll i,j,p,*x = wa,*y = wb;
for(i=0;i<m;++i) ws[i] = 0;
for(i=0;i<n;++i) ws[x[i] = r[i]]++;
for(i=1;i<m;++i) ws[i] += ws[i-1];
for(i=n-1;i>=0;--i) sa[--ws[x[i]]] = i;
for(j=1,p=1;p<n;j<<=1,m=p){
for(p=0,i=n-j;i<n;++i) y[p++] = i;
for(i=0;i<n;++i) if(sa[i] >= j) y[p++] = sa[i] - j;
for(i=0;i<m;++i) ws[i] = 0;
for(i=0;i<n;++i) ws[x[y[i]]]++;
for(i=1;i<m;++i) ws[i] += ws[i-1];
for(i=n-1;i>=0;--i) sa[--ws[x[y[i]]]] = y[i];
for(swap(x,y),p=1,i=1,x[sa[0]] = 0;i<n;++i)
x[sa[i]] = cmp(y,sa[i-1],sa[i],j) ? p-1 : p++;
}
}
inline void get_h(ll *r,ll n){
ll i,j,k=0;for(i=1;i<=n;++i) rank[sa[i]] = i;
for(i=0;i<n;height[rank[i++]] = k)
for(k ? --k : 0,j = sa[rank[i]-1];r[i+k] == r[j+k];++k);
}
ll loger[maxn],minn[maxn][22],n;
inline void pre(){
loger[1] = 0;
for(ll i=2;i<=n;++i){
loger[i] = loger[i-1];
if( (1 << loger[i]+1) == i) ++loger[i];
}
for(ll i=n;i>=1;--i){
minn[i][0] = height[i];
for(ll j=1;i+(1<<j)-1<=n;++j){
minn[i][j] = min(minn[i][j-1],minn[i+(1<<j-1)][j-1]);
}
}
}
inline ll lcp(ll x,ll y){
if(x+1 > y) swap(x,y);++x;
ll k = loger[y-x+1];
return min(minn[x][k],minn[y-(1<<k)+1][k]);
}
ll a[maxn],b[maxn];
ll pos_min[maxn<<2],pos_max[maxn<<2],M;
inline void modify(ll x,ll y){
for(pos_min[x+=M]=y,pos_max[x]=y,x>>=1;x;x>>=1){
pos_min[x] = min(pos_min[x<<1],pos_min[x<<1|1]);
pos_max[x] = max(pos_max[x<<1],pos_max[x<<1|1]);
}
}
inline ll query_min(ll s,ll t){
if(s > t) return -1;
ll ret = pos_min[0];
for(s+=M-1,t+=M+1;s^t^1;s>>=1,t>>=1){
if(~s&1) ret = min(ret,pos_min[s^1]);
if( t&1) ret = min(ret,pos_min[t^1]);
}return ret == pos_min[0] ? -1 : ret;
}
inline ll query_max(ll s,ll t){
if(s > t) return -1;
ll ret = pos_max[0];
for(s+=M-1,t+=M+1;s^t^1;s>>=1,t>>=1){
if(~s&1) ret = max(ret,pos_max[s^1]);
if( t&1) ret = max(ret,pos_max[t^1]);
}return ret == pos_max[0] ? -1 : ret;
}
int main(){
read(n);for(M=1;M<(n+1);M<<=1);
memset(pos_min, 0x3f,sizeof pos_min);
memset(pos_max,-0x3f,sizeof pos_max);
for(ll i=0;i<n;++i){
read(a[n-i-1]);b[i] = a[n-i-1];
}
sort(b,b+n);
for(ll i=0;i<n;++i){
a[i] = lower_bound(b,b+n,a[i]) - b + 1;
}a[n] = 0;
da(a,n+1,n+1);get_h(a,n);pre();
ll ans = 0;
for(ll i=n-1;i>=0;--i){
ans += n-i;
ll x = query_max(1,rank[i]-1);
ll y = query_min(rank[i]+1,n);
if(x != -1 && y != -1) ans -= max(lcp(rank[i],x),lcp(rank[i],y));
else if(x == -1 && y != -1) ans -= lcp(rank[i],y);
else if(x != -1 && y == -1) ans -= lcp(rank[i],x);
printf("%lld\n",ans);
modify(rank[i],rank[i]);
}
getchar();getchar();
return 0;
}

bzoj 4516: 生成魔咒 后缀数组的更多相关文章

  1. 【bzoj4516】[Sdoi2016]生成魔咒 后缀数组+倍增RMQ+STL-set

    题目描述 魔咒串由许多魔咒字符组成,魔咒字符可以用数字表示.例如可以将魔咒字符 1.2 拼凑起来形成一个魔咒串 [1,2].一个魔咒串 S 的非空字串被称为魔咒串 S 的生成魔咒. 例如 S=[1,2 ...

  2. liberOJ #2033. 「SDOI2016」生成魔咒 后缀数组

    #2033. 「SDOI2016」生成魔咒     题目描述 魔咒串由许多魔咒字符组成,魔咒字符可以用数字表示.例如可以将魔咒字符 1 11.2 22 拼凑起来形成一个魔咒串 [1,2] [1, 2] ...

  3. [SDOI2016] 生成魔咒 - 后缀数组,平衡树,STL,时间倒流

    [SDOI2016] 生成魔咒 Description 初态串为空,每次在末尾追加一个字符,动态维护本质不同的子串数. Solution 考虑时间倒流,并将串反转,则变为每次从开头删掉一个字符,即每次 ...

  4. BZOJ 4516: [Sdoi2016]生成魔咒——后缀数组、并查集

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=4516 题意 一开始串为空,每次往串后面加一个字符,求本质不同的子串的个数,可以离线.即长度为 ...

  5. BZOJ.4516.[SDOI2016]生成魔咒(后缀数组 RMQ)

    题目链接 后缀自动机做法见这(超好写啊). 后缀数组是可以做的: 本质不同的字符串的个数为 \(子串个数-\sum_{ht[i]}\),即 \(\frac{n(n+1)}{2}-\sum_{ht[i] ...

  6. BZOJ 4516: [Sdoi2016]生成魔咒(后缀数组)

    传送门 解题思路 题目其实就是动态维护本质不同的串的个数.考虑到只有加数字的操作,所以可以用后缀数组.题目是每次往后加数字,这样不好处理,因为每次加数字之后所有的后缀都会改变.所以要转化一下思路,就是 ...

  7. BZOJ4516: [Sdoi2016]生成魔咒(后缀数组 set RMQ)

    题意 题目链接 Sol 毒瘤SDOI 终于有一道我会做的题啦qwq 首先,本质不同的子串的个数 $ = \frac{n(n + 1)}{2} - \sum height[i]$ 把原串翻转过来,每次就 ...

  8. BZOJ 4516: [Sdoi2016]生成魔咒 [后缀自动机]

    4516: [Sdoi2016]生成魔咒 题意:询问一个字符串每个前缀有多少不同的子串 做了一下SDOI2016R1D2,题好水啊随便AK 强行开map上SAM 每个状态的贡献就是\(Max(s)-M ...

  9. BZOJ4516: [Sdoi2016]生成魔咒 后缀自动机

    #include<iostream> #include<cstdio> #include<cstring> #include<queue> #inclu ...

随机推荐

  1. Spring Security 表单登录

    1. 简介 本文将重点介绍使用Spring Security登录. 本文将构建在之前简单的Spring MVC示例之上,因为这是设置Web应用程序和登录机制的必不可少的. 2. Maven 依赖 要将 ...

  2. java 动态实现接口

    package com.yhouse.modules.daos; public interface IUserDao { public String getUserName(); public Str ...

  3. git 工具 - 子模块(submodule)

    From: https://git-scm.com/book/zh/v2/Git-%E5%B7%A5%E5%85%B7-%E5%AD%90%E6%A8%A1%E5%9D%97 子模块 有种情况我们经常 ...

  4. sigar 监控服务器硬件信息

    转载 http://www.cnblogs.com/jifeng/archive/2012/05/16/2503519.html 通过使用第三方开源jar包sigar.jar我们可以获得本地的信息 1 ...

  5. 【Android】带底部指示的自定义ViewPager控件

    在项目中经常需要使用轮转广告的效果,在android-v4版本中提供的ViewPager是一个很好的工具,而一般我们使用Viewpager的时候,都会选择在底部有一排指示物指示当前显示的是哪一个pag ...

  6. c# 根据枚举Value 获得名称

    // 定义枚举类型enum sotype : int { book=1, pen=2, other=3 } // 输出名称 switch (Enum.GetName(typeof(sotype), 1 ...

  7. Gradle 介绍

    介绍:Gradle是一种构建工具,它抛弃了基于XML的构建脚本,取而代之的是采用一种基于Groovy的内部领域特定语言.Gradle的设计理念是,所有有用的特性都由Gradle插件提供,一个Gradl ...

  8. (转)ConcurrentModificationException异常原因和解决方法

    原文地址: http://www.cnblogs.com/dolphin0520/p/3933551.html 一.ConcurrentModificationException异常出现的原因 先看下 ...

  9. varnish代理缓存服务器的安装与使用

    1. 下载解压 cd /usr/local/src/ wget https://codeload.github.com/varnishcache/varnish-cache/zip/master ch ...

  10. SVN设置删除权限

    svn是很多企业和个人用的版本控制软件,非常方便.通用的权限控制在auth文件中,但是缺点是权限较大,w的权限一旦赋予,相应用户都可以有删除svn文件的权限,但是如果不赋予w权限,又没办法commit ...