Sorting It All Out

Time Limit: 1000MS Memory Limit: 10000K

Description

An ascending sorted sequence of distinct values is one in which some form of a less-than operator is used to order the elements from smallest to largest. For example, the sorted sequence A, B, C, D implies that A < B, B < C and C < D. in this problem, we will give you a set of relations of the form A < B and ask you to determine whether a sorted order has been specified or not.

Input

Input consists of multiple problem instances. Each instance starts with a line containing two positive integers n and m. the first value indicated the number of objects to sort, where 2 <= n <= 26. The objects to be sorted will be the first n characters of the uppercase alphabet. The second value m indicates the number of relations of the form A < B which will be given in this problem instance. Next will be m lines, each containing one such relation consisting of three characters: an uppercase letter, the character “<” and a second uppercase letter. No letter will be outside the range of the first n letters of the alphabet. Values of n = m = 0 indicate end of input.

Output

For each problem instance, output consists of one line. This line should be one of the following three:

Sorted sequence determined after xxx relations: yyy…y.

Sorted sequence cannot be determined.

Inconsistency found after xxx relations.

where xxx is the number of relations processed at the time either a sorted sequence is determined or an inconsistency is found, whichever comes first, and yyy…y is the sorted, ascending sequence.

Sample Input

4 6

A < B

A < C

B < C

C < D

B < D

A < B

3 2

A < B

B < A

26 1

A < Z

0 0

Sample Output

Sorted sequence determined after 4 relations: ABCD.

Inconsistency found after 2 relations.

Sorted sequence cannot be determined.


解题心得:

  • 题意就是给你一系列的关系,让你从他给出的关系中从小到大排一个序,如果给出的关系中发生冲突,输出发生冲突的那一步,如果可以得到一个序,输出题目给出到第几个关系才能确定顺序。
  • 其实就是给出一个关系,然后拓扑排序判断一下,因为最多只有26个字母,所以怎么写都不会超时。如果题目给出的关系发生冲突,那么必然可以形成环,所以判断环就行,如果能够确定n个点的关系,那么每次只能出现一个出度为0的点,最后n个点的顺序全得到。思路比较简单,只要不手贱写一些BUG那么还是很容易用代码实现的。

#include<stdio.h>
#include<algorithm>
#include<set>
#include<stack>
#include<vector>
#include<cstring>
using namespace std;
const int maxn = 100;
char s[maxn];
vector <int> ve[maxn];//用不定长数组来存储边的关系
int out[maxn],n,m;
bool vis[maxn],maps[maxn][maxn];
int ans;
stack <int> st1;
void init()
{
ans = -1;
for(int i=0; i<maxn; i++)
ve[i].clear();
memset(out,0,sizeof(out));
memset(maps,0,sizeof(maps));
memset(vis,0,sizeof(vis));
} int toposort(int pos)
{
maps[s[0]][s[2]] = true;
vis[s[0]] = vis[s[2]] = true;//已经出现了的点
out[s[0]]++;//出度++
ve[s[2]].push_back(s[0]);
int in1[maxn],out1[maxn];
bool vis1[maxn];
memcpy(out1,out,sizeof(out));
memcpy(vis1,vis,sizeof(vis));
stack<int>st;
bool flag = false;
while(1)
{
int num = 0;
vector<int>va;
for(int i='A'; i<'A'+n; i++)
{
if(out1[i] == 0 && vis1[i])//出度为零并且已经出现了的点
va.push_back(i);
}
if(va.size() > 1)//出度为0的点不止一个做好标记
flag = true;
if(va.size() == 0)//没有出度为0的点了
break; for(int i=0; i<va.size(); i++)//根据拓扑排序来解决这个出度为0的点
{
int k = va[i];
st.push(k);
vis1[k] = false;
for(int j=0;j<ve[k].size();j++)
out1[ve[k][j]]--;
}
}
int sum2 = 0;
for(int i='A'; i<'A'+n; i++)//检查是否出现了环
if(out1[i])
sum2++;
if(sum2 != 0)
{
//如果有环记录出现环的步数,然后直接返回
ans = pos;
return 2;
}
if(flag)//出现了多个入度为零的点
return 1;
if(st.size() == n)//找到了n个符合拓扑排序的点
{
ans = pos;
st1 = st;
return 3;
}
return 1;//给出的关系不够不能得出答案
} int main()
{
while(scanf("%d%d",&n,&m) && n+m)
{
init();//初始化一些数组
bool cont_flag = false;//是否已经出现结果
int k;
for(int i=1; i<=m; i++)
{
scanf("%s",s);
if(cont_flag)
continue;
if(maps[s[0]][s[2]])//去除重边
continue; k = toposort(i);
if(k == 2)
cont_flag = true;
if(k == 3)
cont_flag = true;
}
if(k != 3 && k != 2)//没找到答案也未出现环,说明给出的关系不足以判断
printf("Sorted sequence cannot be determined.\n");
if(k == 2)
printf("Inconsistency found after %d relations.\n",ans);
if(k == 3)
{
printf("Sorted sequence determined after %d relations: ",ans);
while(st1.size())
{
printf("%c",st1.top());
st1.pop();
}
printf(".\n");
}
}
return 0;
}

POJ:1094-Sorting It All Out(拓扑排序经典题型)的更多相关文章

  1. ACM: poj 1094 Sorting It All Out - 拓扑排序

    poj 1094 Sorting It All Out Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%lld & ...

  2. poj 1094 Sorting It All Out (拓扑排序)

    http://poj.org/problem?id=1094 Sorting It All Out Time Limit: 1000MS   Memory Limit: 10000K Total Su ...

  3. [ACM_模拟] POJ 1094 Sorting It All Out (拓扑排序+Floyd算法 判断关系是否矛盾或统一)

    Description An ascending sorted sequence of distinct values is one in which some form of a less-than ...

  4. POJ 1094 Sorting It All Out (拓扑排序) - from lanshui_Yang

    Description An ascending sorted sequence of distinct values is one in which some form of a less-than ...

  5. poj 1094 Sorting It All Out_拓扑排序

    题意:是否唯一确定顺序,根据情况输出 #include <iostream> #include<cstdio> #include<cstring> #include ...

  6. POJ 1094 Sorting It All Out 拓扑排序 难度:0

    http://poj.org/problem?id=1094 #include <cstdio> #include <cstring> #include <vector& ...

  7. PKU 1094 Sorting It All Out(拓扑排序)

    题目大意:就是给定一组字母的大小关系判断他们是否能组成唯一的拓扑序列. 是典型的拓扑排序,但输出格式上确有三种形式: 1.该字母序列有序,并依次输出: 2.判断该序列是否唯一: 3.该序列字母次序之间 ...

  8. POJ 1094 Sorting It All Out(拓扑排序+判环+拓扑路径唯一性确定)

    Sorting It All Out Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 39602   Accepted: 13 ...

  9. [ACM] POJ 1094 Sorting It All Out (拓扑排序)

    Sorting It All Out Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 26801   Accepted: 92 ...

随机推荐

  1. js获取ISO8601规范时间

    var d = new Date(); d.setHours(d.getHours(), d.getMinutes() - d.getTimezoneOffset()); console.log(d. ...

  2. 通用的ashx调用

    直接上代码 还是有一定通用性的 <%@ WebHandler Language="C#" Class="MyService" %> using Sy ...

  3. Python使用selenium进行爬虫(一)

    JAVA爬虫框架很多,类似JSOUP,WEBLOGIC之类的爬虫框架都十分好用,个人认为爬虫的大致思路就是: 1.挑选需求爬的URL地址,将其放入需求网络爬虫的队列,也可以把爬到的符合一定需求的地址放 ...

  4. B/S架构 C/S架构 SOA架构

    一.什么是C/S和B/S 第一.什么是C/S结构.C/S (Client/Server)结构,即大家熟知的客户机和服务器结构.它是软件系统体系结构,通过它可以充分利用两端硬件环境的优势,将任务合理分配 ...

  5. 适配器模式和php实现

    1. 概述 将一个类的接口转换成客户希望的另外一个接口.Adapter模式使得原本由于接口不兼容而不能一起工作的那些类可以在一起工作. 2. 解决的问题 即Adapter模式使得原本由于接口不兼容而不 ...

  6. 转:IOS程序之间的文件共享

    原文 System-Declared Uniform Type Identifiers One of the common tasks that an iOS developer has to do ...

  7. ubuntu server 16.04安装GPU服务器

    1 Ubuntu16.04 系统安装过程中,需要勾选openssh-server 方便远程连接 2 必须安装gcc 与g++ 3 安装显卡驱动 NVIDIA-Linux-x86_64-367.57.r ...

  8. iOS-浅谈runtime运行时机制02-runtime简单使用

    http://blog.csdn.net/jiajiayouba/article/details/44201079 由于OC是运行时语言,只有在程序运行时,才会去确定对象的类型,并调用类与对象相应的方 ...

  9. Python+selenium 之操作Cookie

    在验证浏览器中cookie是否正确时,有时基于真实cookie的测试是无法通过白盒和集成测试进行的.Webdriver提供了操作Cookie的相关方法,可以读取,添加和删除cookie信息. 文本we ...

  10. C# 向服务器上传文件(客服端winform、服务端web)

    转载 首先写客服端,winform模拟一个post提交: /// <summary> /// 将本地文件上传到指定的服务器(HttpWebRequest方法) /// </summa ...