可持久化treap(FHQ treap)
FHQ treap 的整理
treap = tree + heap,即同时满足二叉搜索树和堆的性质。
为了使树尽可能的保证两边的大小平衡,所以有一个key值,使他满足堆得性质,来维护树的平衡,key值是随机的。
treap有一般平衡树的功能,前驱、后继、第k大、查询排名、插入、删除。也比较好写
但是对于区间上的问题是不能做的,例如
- 区间增减
- 区间求最值
- 区间反转(倒序)
- 区间移动(把一段剪切、粘贴)
(splay是可以做的)
但是有一种神奇的数据结构,即可以满足treap的功能,也可以区间上进行操作——FHQ treap
FHQ treap 只有两个基本操作,所以代码量也小的多。
split
分离,讲一个treap分成两个treap。
有两种分离的类型,一个是按照权值val分,小于等于k的分成一个,大于的一个。另一种是取出区间上的前k个数。
权值:
对于一颗treap,小于等于k的点是存在于一颗子树中的,但是这颗子树可能有大于k的,所以在拆分时,是要重建这棵树的。
void Split(int now,int k,int &x,int &y) {
if (!now) x = y = ;
else {
if (val[now] <= k)
x = now,Split(ch[now][],k,ch[now][],y);
else
y = now,Split(ch[now][],k,x,ch[now][]);
pushup(now);
}
}
代码非常奇妙,它引用了两个值,x,y,这两个值就是重建的最重要的两个变量,一定要有取地址符。
x引用的是一个小于等于k的节点(假设是a)的右儿子,y引用的是一个大于k的节点左儿子。
这里a是小于等于k的,它的左子树也是小于等于k的,但是右儿子却不一定是小于k的,所以这里取出它的右儿子,当遇到第一个小于k的节点是,让它成为a的右儿子。
如下图,k=6,那么a是小于6的,往右走,发现右儿子是大于6的,所以a的右儿子是要改变的,接下来往左走的过程中,将a的右儿子指向权值为6的点即可。
重建的过程:如果当前点now的值小于k那么,他的左边一定都是小于k的,所以往右走。
复杂度 $O(logn)$
区间上前k个数
void Split(int now,int k,int &x,int &y) {
if (!now) x=y=;
else {
if (k <= siz[ch[now][]])
y = now,Split(ch[now][],k,x,ch[now][]);
else
x = now,Split(ch[now][],k-siz[ch[now][]]-,ch[now][],y);
pushup(now);
}
}
原理是一样的,不详细说了。
复杂度,$O(logn)$
merge
合并两颗子树,保证第一颗树的所有点的权值都小于第二颗子树的所有节点。
那么重建只要满足堆的性质就好了。
还是有两个变量x,y,
int Merge(int x,int y) {
if (!x || !y) return x + y;
if (key[x] < key[y]) {
ch[x][] = Merge(ch[x][],y);
pushup(x); return x;
}
else {
ch[y][] = Merge(x,ch[y][]);
pushup(y); return y;
}
}
这里会发现,当x树的key小时,只将x的左半边加入到重建的树中,y子树小时,只将它的右半边加入到子树中。为了满足treap的性质。
复杂度 $O(logn)$
两个基本操作就完成了。
insert
插入一个权值为k的数。
过程:把treap分成两个,小于等于k的,大于k的,把x和两个子树合并即可
Split(Root,k,x,y);
Root = Merge(Merge(x,makenode(k)),y);
delete
删除一个权值为k的数。
过程:先分成小于等于k的 a 和大于k的 b ,之后将x分成小于等于k-1的 c 和大于k-1的 d ,d就是k,所以将d的两个儿子合并起来,然后与c,b合并即可;
Split(Root,k,x,y);
Split(x,k-,x,z);
z = Merge(ch[z][],ch[z][]);
Root = Merge(Merge(x,z),y);
k的排名
求k的排名
过程:分成小于等于k-1的 x ,和大于k-1 的 y 两个子树,子树x的大小就是k的排名。
Split(Root,k-,x,y);
printf("%d\n",siz[x]+);
Root = Merge(x,y);
第k个数
求第k个数
过程:和splay,treap一样的求法;
inline int getkth(int p,int k) {
while (true) {
if (k == siz[ch[p][]] + ) return p;
if (ch[p][] && k <= siz[ch[p][]]) p = ch[p][];
else k-= ((ch[p][] ? siz[ch[p][]] : ) + ),p = ch[p][];
}
}
前驱
求k的排名
过程:分成小于等于k-1的 x ,和大于k-1 的 y 两个子树,子树x中最大的数就是x的前驱。
Split(Root,k-,x,y);
printf("%d\n",val[getkth(x,siz[x])]);
Root = Merge(x,y);
后继
求k的排名
过程:分成小于等于k的 x ,和大于k 的 y 两个子树,子树y中最小的数就是x的前驱。
Split(Root,k,x,y);
printf("%d\n",val[getkth(y,)]);
Root = Merge(x,y);
FHQtreap的基本操作就是这些了
例题
普通平衡树
#include<cstdio>
#include<algorithm> using namespace std; const int N = ;
int ch[N][],siz[N],key[N],val[N];
int tn,Root; inline char nc() {
static char buf[],*p1 = buf,*p2 = buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,,,stdin),p1==p2) ? EOF : *p1++;
}
inline int read() {
int x = ,f = ;char ch = getchar();
for (; ch<''||ch>''; ch = getchar())
if (ch=='-') f = -;
for (; ch>=''&&ch<=''; ch = getchar())
x = x*+ch-'';
return x * f;
}
inline void pushup(int x) {
siz[x] = siz[ch[x][]] + siz[ch[x][]] + ;
}
inline int makenode(int x) {
++tn;val[tn] = x;siz[tn] = ;key[tn] = rand();return tn;
} int Merge(int x,int y) {
if (!x || !y) return x + y;
if (key[x] < key[y]) {
ch[x][] = Merge(ch[x][],y);
pushup(x); return x;
}
else {
ch[y][] = Merge(x,ch[y][]);
pushup(y); return y;
}
}
void Split(int now,int k,int &x,int &y) {
if (!now) x = y = ;
else {
if (val[now] <= k)
x = now,Split(ch[now][],k,ch[now][],y);
else
y = now,Split(ch[now][],k,x,ch[now][]);
pushup(now);
}
}
inline int getkth(int p,int k) {
while (true) {
if (k == siz[ch[p][]] + ) return p;
if (ch[p][] && k <= siz[ch[p][]]) p = ch[p][];
else k-= ((ch[p][] ? siz[ch[p][]] : ) + ),p = ch[p][];
}
}
int main() {
int x,y,z,opt,k,n = read();
while (n--) {
opt = read(),k = read();
if (opt==) {
Split(Root,k,x,y);
Root = Merge(Merge(x,makenode(k)),y);
}
else if (opt==) {
Split(Root,k,x,y);
Split(x,k-,x,z);
z = Merge(ch[z][],ch[z][]);
Root = Merge(Merge(x,z),y);
}
else if (opt==) {
Split(Root,k-,x,y);
printf("%d\n",siz[x]+);
Root = Merge(x,y);
}
else if (opt==)
printf("%d\n",val[getkth(Root,k)]);
else if (opt==) {
Split(Root,k-,x,y);
printf("%d\n",val[getkth(x,siz[x])]);
Root = Merge(x,y);
}
else {
Split(Root,k,x,y);
printf("%d\n",val[getkth(y,)]);
Root = Merge(x,y);
}
}
return ;
}
文艺平衡树
#include<cstdio>
#include<algorithm> using namespace std; const int N = ; int ch[N][],tag[N],val[N],siz[N],key[N];
int tn,Root,n,m; inline char nc() {
static char buf[],*p1 = buf,*p2 = buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,,,stdin),p1==p2) ? EOF : *p1++;
}
inline int read() {
int x = ,f = ;char ch = nc();
for (; ch<''||ch>''; ch = nc())
if (ch=='-') f = -;
for (; ch>=''&&ch<=''; ch = nc())
x = x*+ch-'';
return x * f;
}
inline void pushup(int x) {
siz[x] = siz[ch[x][]] + siz[ch[x][]] + ;
}
inline void pushdown(int x) {
if (x && tag[x]) {
tag[x] ^= ;
swap(ch[x][],ch[x][]);
if (ch[x][]) tag[ch[x][]] ^= ;
if (ch[x][]) tag[ch[x][]] ^= ;
}
}
inline int makenode(int x) {
++tn;siz[tn] = ;val[tn] = x;key[tn] = rand();return tn;
}
int merge(int x,int y) {
if (!x || !y) return x + y;
pushdown(x);pushdown(y);
if (key[x] < key[y]) {
ch[x][] = merge(ch[x][],y);
pushup(x);return x;
}
else {
ch[y][] = merge(x,ch[y][]);
pushup(y);return y;
}
}
void split(int now,int k,int &x,int &y) {
if (!now) x = y = ;
else {
pushdown(now);
if (k<=siz[ch[now][]])
y = now,split(ch[now][],k,x,ch[now][]);
else
x = now,split(ch[now][],k-siz[ch[now][]]-,ch[now][],y);
pushup(now);
}
}
inline void rever(int l,int r) {
int a,b,c,d;
split(Root,r,a,b);
split(a,l-,c,d);
tag[d] ^= ;
Root = merge(merge(c,d),b);
}
void print(int x) {
if (!x) return ;
pushdown(x);
print(ch[x][]);
printf("%d ",val[x]);
print(ch[x][]);
}
int main() {
n = read(),m = read();
for (int i=; i<=n; ++i) {
Root = merge(Root,makenode(i));
}
while (m--) {
int a = read(),b = read();
rever(a,b);
}
print(Root);
return ;
}
=========
可持久化treap(FHQ treap)的更多相关文章
- Luogu P3835 【模板】可持久化平衡树(fhq Treap)
P3835 [模板]可持久化平衡树 题意 题目背景 本题为题目普通平衡树的可持久化加强版. 题目描述 您需要写一种数据结构(可参考题目标题),来维护一些数,其中需要提供以下操作(对于各个以往的历史版本 ...
- 非旋treap (fhq treap) 指针版
传送门 看了一圈,好像真的没什么用指针的呢.. 明明觉得指针很好看(什么??你说RE???听不见听不见) 其实我觉得用数组的话不RE直接WA调起来不是更困难嘛,毕竟通过gdb还可以知道哪里RE,WA就 ...
- 可持久化Treap(fhq Treap,非旋转式Treap)学习(未完待续)
简介: Treap,一种表现优异的BST 优势: 其较于AVL.红黑树实现简单,浅显易懂 较于Splay常数小,通常用于树套BST表现远远优于Splay 或许有人想说S ...
- 洛谷.3835.[模板]可持久化平衡树(fhq treap)
题目链接 对每次Merge(),Split()时产生的节点都复制一份(其实和主席树一样).时间空间复杂度都为O(qlogq).(应该更大些 因为rand()?内存真的爆炸..) 对于无修改的操作实际上 ...
- 非旋Treap——fhq treap
https://www.luogu.org/problemnew/show/P3369 知识点:1.拆分split,合并merge 2.split,merge要点:通过传址调用来简便代码 3.记得ro ...
- 平衡树(Splay、fhq Treap)
Splay Splay(伸展树)是一种二叉搜索树. 其复杂度为均摊\(O(n\log n)\),所以并不可以可持久化. Splay的核心操作有两个:rotate和splay. pushup: 上传信息 ...
- 「学习笔记」 FHQ Treap
FHQ Treap FHQ Treap (%%%发明者范浩强年年NOI金牌)是一种神奇的数据结构,也叫非旋Treap,它不像Treap zig zag搞不清楚(所以叫非旋嘛),也不像Splay完全看不 ...
- 2021.12.08 平衡树——FHQ Treap
2021.12.08 平衡树--FHQ Treap http://www.yhzq-blog.cc/fhqtreapzongjie/ https://www.cnblogs.com/zwfymqz/p ...
- FHQ Treap及其可持久化与朝鲜树式重构
FHQ Treap,又称无旋treap,一种不基于旋转机制的平衡树,可支持所有有旋treap.splay等能支持的操作(只有在LCT中会比splay复杂度多一个log).最重要的是,它是OI中唯一一种 ...
随机推荐
- sql常用操作(一)
sql(structured query language,结构化查询语言)语言:和数据库交互的语言,进行数据库管理的语言. 1.1 sql语句的作用:说白了就是增删改查 管理数据库 管理表 管理数据 ...
- 关于vue-resource 转变成axios的过程
在做东钿贷后系统的时候,我选择了vue-resource这个插件作为与服务器沟通工具,但是听说前端同行说vuejs2.0已经不在维护vue-resource了,vuejs2.0 已经使用了axios了 ...
- Android 第三方库导致jar包冲突解决办法
这几天的任务是将mapbox的工程合到程序中去,但是合并过程却出现了问题 合并方法: 在app的build.gradle中添加 dependencies { compile ('com.mapbox. ...
- virtualapk爬坑心得
1.宿主和插件的工程build.gradle必须是 com.android.tools.build:gradle:2.1.3 gradle-wrapper 必须是 gradle-2.14.1-all ...
- Easy UI 关联表的字段展示
刚接触的easy UI ,发现展示关联表的字段的时候,卡住了 好一段时间,后来通过qq群询问,终于得到答案 实体Record public class Record:Base { public Gui ...
- POJ 2411 Mondriaan's Dream (状压DP,骨牌覆盖,经典)
题意: 用一个2*1的骨牌来覆盖一个n*m的矩形,问有多少种方案?(1<=n,m<=11) 思路: 很经典的题目,如果n和m都是奇数,那么答案为0.同uva11270这道题. 只需要m个b ...
- AE开发关于OnMapReplaced方法的使用原理
The OnMapReplaced event is triggered whenever the IMapControl2::Map is replaced by another map, such ...
- Ubuntu 16.04 换国内源
官方渠道,图形界面,操作简单,可以说对新手及其友好!! 依次打开:搜索,软件与更新,第一个和第三个勾上,下载自,其它,然后在中国条目下选择你想使用的镜像站点,然后点“选择服务器”,然乎点击“关闭”,选 ...
- 《队长说得队》【Alpha】Scrum meeting 5
项目 内容 这个作业属于哪个课程 >>2016级计算机科学与工程学院软件工程(西北师范大学) 这个作业的要求在哪里 >>实验十二 团队作业8:软件测试与ALPHA冲刺 团队名称 ...
- python - 日期处理模块
首先就是模块的调用,很多IDE都已经安装好了很多Python经常使用到的模块,所以我们暂时不需要安装模块了. ? 1 2 3 import datetime import time import ca ...