poj3904 Sky Code —— 唯一分解定理 + 容斥原理 + 组合
题目链接:http://poj.org/problem?id=3904
| Time Limit: 1000MS | Memory Limit: 65536K | |
| Total Submissions: 2968 | Accepted: 998 |
Description
Input
Output
Sample Input
4
2 3 4 5
4
2 4 6 8
7
2 3 4 5 7 6 8
Sample Output
1
0
34
Source
题意:
给出n个数, 随便挑4个, 使得这四个数的最大公约数为1, 问有多少种组合?
题解:
思路:先用容斥原理计算出四个数的最大公约数>=1的组合数, 然后再用总数C(n,4)减之。
1.将每个数进行分解质因数, 然后再根据这些质因数组合出不同的因子,并记录这个因子出现的次数以及由多少个质因数构成。
2.容斥原理:比如因子2的个数为a,则四个数公约数为2的个数 为C(a,4),因子3的个数为b,则四个数公约数为3的个数为C(b,4),因子6(2*3)的个 数为c,则四个数公约数的个数为C(c,4)。 但是公约数为2的情况中或者公约数为3的情况中可能包括公约数为6的情况,相当于几个集合求并集,这就需要容斥定理来做。
3.如果这个因子出现的次数>=4, 则表明这个因子可以作为某四个数的最大公约数的因子。
4.根据容斥原理:当这个因子的由奇数个质因数构成时, 加; 当这个因子由偶数个质因子构成时, 减。
5. ans = C(n,4) - gcd(a,b,c,d)!=1的组合数。
代码如下:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <string>
#include <vector>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <sstream>
#include <algorithm>
using namespace std;
#define pb push_back
#define mp make_pair
#define ms(a, b) memset((a), (b), sizeof(a))
#define eps 0.0000001
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
const int mod = 1e9+;
const int maxn = 1e4+; LL pri[maxn], fac_num[maxn], fac_pri[maxn];
LL n, cnt; LL C(LL x)
{
return x*(x-)*(x-)*(x-)/;
} void Divide(LL x)
{
cnt = ;
for(int i = ; i*i<=x; i++)
{
if(x%i==)
{
pri[cnt++] = i;
while(x%i==) x /= i;
}
}
if(x!=) pri[cnt++] = x;
} void Unit()
{
for(LL s = ; s < (<<cnt); s++) //用二进制, 亦可用递归
{
LL tmp = , sum = ;
for(int j = ; j<cnt; j++)
if(s&(<<j))
{
tmp *= pri[j];
sum++;
} fac_num[tmp]++;
fac_pri[tmp] = sum;
}
} void init()
{
ms(fac_num, );
ms(fac_pri, ); LL x;
for(int i = ; i<=n; i++)
{
scanf("%lld",&x);
Divide(x); //分解质因数
Unit(); //质因数可以组成哪些因子(这些因子就是四个数的约数)
}
} void solve()
{
LL tmp = ;
for(int i = ; i<=1e4; i++) //容斥, 计算gcd(a,b,c,d)!=1的个数
{
if(fac_num[i]>=) //这个因子的个数必须不小于4, 才能成为4个数的约束
{
if(fac_pri[i]&) //素数个数为奇数时, 加
tmp += C(fac_num[i]);
else //素数个数为偶数时, 减
tmp -= C(fac_num[i]);
}
}
LL ans = C(n) - tmp; //总的减去gcd(a,b,c,d)!=1的个数,即为gcd(a,b,c,d)=1的个数。
printf("%lld\n", ans);
} int main()
{
while(scanf("%lld",&n)!=EOF)
{
init();
solve();
}
}
poj3904 Sky Code —— 唯一分解定理 + 容斥原理 + 组合的更多相关文章
- POJ3904 Sky Code
题意 Language:Default Sky Code Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 3980 Accepte ...
- [poj 3904] sky code 解题报告(组合计算+容斥原理)
题目链接:http://poj.org/problem?id=3904 题目大意: 给出一个数列,询问从中取4个元素满足最大公约数为1的方案数 题解: 很显然,ans=总的方案数-最大公约数大于1的4 ...
- POJ3904 Sky Code【容斥原理】
题目链接: http://poj.org/problem?id=3904 题目大意: 给你N个整数.从这N个数中选择4个数,使得这四个数的公约数为1.求满足条件的 四元组个数. 解题思路: 四个数的公 ...
- POJ 3904 Sky Code (容斥原理)
B - Sky Code Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Submit ...
- [poj3904]Sky Code_状态压缩_容斥原理
Sky Code poj-3904 题目大意:给你n个数,问能选出多少满足题意的组数. 注释:如果一个组数满足题意当且仅当这个组中有且只有4个数,且这4个数的最大公约数是1,$1\le n\le 10 ...
- Sky Code(poj3904)
Sky Code Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 2085 Accepted: 665 Descripti ...
- poj2773 —— 二分 + 容斥原理 + 唯一分解定理
题目链接:http://poj.org/problem?id=2773 Happy 2006 Time Limit: 3000MS Memory Limit: 65536K Total Submi ...
- [Codeforces 997C]Sky Full of Stars(排列组合+容斥原理)
[Codeforces 997C]Sky Full of Stars(排列组合+容斥原理) 题面 用3种颜色对\(n×n\)的格子染色,问至少有一行或一列只有一种颜色的方案数.\((n≤10^6)\) ...
- Pairs Forming LCM (LCM+ 唯一分解定理)题解
Pairs Forming LCM Find the result of the following code: ; i <= n; i++ ) for( int j = i; j ...
随机推荐
- 洛谷——P2878 [USACO07JAN]保护花朵Protecting the Flowers
P2878 [USACO07JAN]保护花朵Protecting the Flowers 题目描述 Farmer John went to cut some wood and left N (2 ≤ ...
- Codeforces Gym 100431A Achromatic Number 欧拉回路
原题链接:http://codeforces.com/gym/100431/attachments/download/2421/20092010-winter-petrozavodsk-camp-an ...
- javaScript 时间转换,将后台返回的时间为一串数字转成正常格式
js完整代码: function transferTime(cTime){ var jsonDate = new Date(parseInt(cTime)); Date.prototype.forma ...
- JVM类加载机制————2
类加载机制的第一个阶段加载做的工作有: 1.通过一个类的全限定名(包名与类名)来获取定义此类的二进制字节流(Class文件).而获取的方式,可以通过jar包.war包.网络中获取.JSP文件生成等方式 ...
- python导入sklearn模块出现DLL load failed的解决办法
笔者安装的python版本是2.7.6,最近在导入sklearn(版本:0.16.1)的模块时,经常出现DLL load failed的报错,具体截图如下: 解决办法与步骤如下: 由于sklearn的 ...
- android特效集合
https://github.com/Trinea/android-open-project http://www.cnblogs.com/hawkon/p/3593709.html http://i ...
- background-attachment
CreateTime--2017年9月28日10:58:58 Author:Marydon background-attachment 1.定义 定义背景图片随滚动轴的移动方式(设置背景图像是否固 ...
- iOS 私有库的使用
最近项目说要用私有库 主要过程 创建两个库: 索引库 组件库 组件库 用git操作 比如更新代码 push 打tag等 索引库 存放组件的描述信息 也就是 .spec文件 这个文件和 ...
- linux查找文件夹下的全部文件里是否含有某个字符串
查找文件夹下的全部文件里是否含有某个字符串 find .|xargs grep -ri "IBM" 查找文件夹下的全部文件里是否含有某个字符串,而且仅仅打印出文件名称 fin ...
- AMD单桥主板上电时序的详细解释
3个待机条件: 1.桥需要得到待机电压:3.3V,1.5V/1.2V2.25M起振注:NV的RTC电路,一般不会导致时序故障,都可以出CPURST#3.PWRGD-SB(即INTEL芯片组的RSMRS ...