04-树7 二叉搜索树的操作集(30 point(s)) 【Tree】
04-树7 二叉搜索树的操作集(30 point(s))
本题要求实现给定二叉搜索树的5种常用操作。
函数接口定义:
BinTree Insert( BinTree BST, ElementType X );
BinTree Delete( BinTree BST, ElementType X );
Position Find( BinTree BST, ElementType X );
Position FindMin( BinTree BST );
Position FindMax( BinTree BST );
其中BinTree结构定义如下:
typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
ElementType Data;
BinTree Left;
BinTree Right;
};
函数Insert将X插入二叉搜索树BST并返回结果树的根结点指针;
函数Delete将X从二叉搜索树BST中删除,并返回结果树的根结点指针;如果X不在树中,则打印一行Not Found并返回原树的根结点指针;
函数Find在二叉搜索树BST中找到X,返回该结点的指针;如果找不到则返回空指针;
函数FindMin返回二叉搜索树BST中最小元结点的指针;
函数FindMax返回二叉搜索树BST中最大元结点的指针。
裁判测试程序样例:
#include <stdio.h>
#include <stdlib.h>
typedef int ElementType;
typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
ElementType Data;
BinTree Left;
BinTree Right;
};
void PreorderTraversal( BinTree BT ); /* 先序遍历,由裁判实现,细节不表 */
void InorderTraversal( BinTree BT ); /* 中序遍历,由裁判实现,细节不表 */
BinTree Insert( BinTree BST, ElementType X );
BinTree Delete( BinTree BST, ElementType X );
Position Find( BinTree BST, ElementType X );
Position FindMin( BinTree BST );
Position FindMax( BinTree BST );
int main()
{
BinTree BST, MinP, MaxP, Tmp;
ElementType X;
int N, i;
BST = NULL;
scanf("%d", &N);
for ( i=0; i<N; i++ ) {
scanf("%d", &X);
BST = Insert(BST, X);
}
printf("Preorder:"); PreorderTraversal(BST); printf("\n");
MinP = FindMin(BST);
MaxP = FindMax(BST);
scanf("%d", &N);
for( i=0; i<N; i++ ) {
scanf("%d", &X);
Tmp = Find(BST, X);
if (Tmp == NULL) printf("%d is not found\n", X);
else {
printf("%d is found\n", Tmp->Data);
if (Tmp==MinP) printf("%d is the smallest key\n", Tmp->Data);
if (Tmp==MaxP) printf("%d is the largest key\n", Tmp->Data);
}
}
scanf("%d", &N);
for( i=0; i<N; i++ ) {
scanf("%d", &X);
BST = Delete(BST, X);
}
printf("Inorder:"); InorderTraversal(BST); printf("\n");
return 0;
}
/* 你的代码将被嵌在这里 */
输入样例:
10
5 8 6 2 4 1 0 10 9 7
5
6 3 10 0 5
5
5 7 0 10 3
输出样例:
Preorder: 5 2 1 0 4 8 6 7 10 9
6 is found
3 is not found
10 is found
10 is the largest key
0 is found
0 is the smallest key
5 is found
Not Found
Inorder: 1 2 4 6 8 9
思路
先序遍历 是 根 左 右
中序遍历 是 左 根 右
插入就是 如果目标比当前的结点大 就往右 递归 比当前结点小 往左递归
碰到 NULL 就插入
然后删除
如果左右子树都存在
那么就找右子树的最小结点来替代当前结点
如果右子数不存在 直接把左子树接过来
如果左子树不存在 直接把右子数接过来
AC代码
#include <stdio.h>
#include <stdlib.h>
typedef int ElementType;
typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
ElementType Data;
BinTree Left;
BinTree Right;
};
void PreorderTraversal( BinTree BT ); /* 先序遍历,由裁判实现,细节不表 */
void InorderTraversal( BinTree BT ); /* 中序遍历,由裁判实现,细节不表 */
BinTree Insert( BinTree BST, ElementType X );
BinTree Delete( BinTree BST, ElementType X );
Position Find( BinTree BST, ElementType X );
Position FindMin( BinTree BST );
Position FindMax( BinTree BST );
int main()
{
BinTree BST, MinP, MaxP, Tmp;
ElementType X;
int N, i;
BST = NULL;
scanf("%d", &N);
for ( i=0; i<N; i++ ) {
scanf("%d", &X);
BST = Insert(BST, X);
}
printf("Preorder:"); PreorderTraversal(BST); printf("\n");
MinP = FindMin(BST);
MaxP = FindMax(BST);
scanf("%d", &N);
for( i=0; i<N; i++ ) {
scanf("%d", &X);
Tmp = Find(BST, X);
if (Tmp == NULL) printf("%d is not found\n", X);
else {
printf("%d is found\n", Tmp->Data);
if (Tmp==MinP) printf("%d is the smallest key\n", Tmp->Data);
if (Tmp==MaxP) printf("%d is the largest key\n", Tmp->Data);
}
}
scanf("%d", &N);
for( i=0; i<N; i++ ) {
scanf("%d", &X);
BST = Delete(BST, X);
}
printf("Inorder:"); InorderTraversal(BST); printf("\n");
return 0;
}
/* 你的代码将被嵌在这里 */
void PreorderTraversal( BinTree BT )
{
if (BT == NULL)
return;
printf(" %d", BT->Data);
PreorderTraversal( BT->Left);
PreorderTraversal( BT->Right);
}
void InorderTraversal( BinTree BT )
{
if (BT == NULL)
return;
InorderTraversal( BT->Left );
printf(" %d", BT->Data);
InorderTraversal( BT->Right);
}
BinTree Insert( BinTree BST, ElementType X )
{
if (BST == NULL)
{
BST = (BinTree) malloc(sizeof(struct TNode));
BST->Data = X;
BST->Left = NULL;
BST->Right = NULL;
}
else if (X > BST->Data)
BST->Right = Insert(BST->Right, X);
else if (X < BST->Data)
BST->Left = Insert(BST->Left, X);
return BST;
}
Position Find( BinTree BST, ElementType X )
{
if (BST == NULL)
return NULL;
else if (X == BST->Data)
return BST;
else if (X > BST->Data)
return Find (BST->Right, X);
else if (X < BST->Data)
return Find (BST->Left, X);
}
Position FindMin( BinTree BST )
{
if (BST == NULL)
return NULL;
while (BST->Left != NULL)
BST = BST->Left;
return BST;
}
Position FindMax( BinTree BST )
{
if (BST == NULL)
return NULL;
while (BST->Right != NULL)
BST = BST->Right;
return BST;
}
BinTree Delete( BinTree BST, ElementType X )
{
BinTree temp;
if (BST == NULL)
printf("Not Found\n");
else
{
if (X < BST->Data)
BST->Left = Delete(BST->Left, X);
else if (X > BST->Data)
BST->Right = Delete(BST->Right, X);
else
{
if (BST->Left && BST->Right)
{
temp = FindMin(BST->Right);
BST->Data = temp->Data;
BST->Right = Delete(BST->Right, temp->Data);
}
else
{
temp = BST;
if (BST->Left == NULL)
BST = BST->Right;
else if (BST->Right == NULL)
BST = BST->Left;
free(temp);
}
}
}
return BST;
}
04-树7 二叉搜索树的操作集(30 point(s)) 【Tree】的更多相关文章
- PTA二叉搜索树的操作集 (30分)
PTA二叉搜索树的操作集 (30分) 本题要求实现给定二叉搜索树的5种常用操作. 函数接口定义: BinTree Insert( BinTree BST, ElementType X ); BinTr ...
- [PTA] 数据结构与算法题目集 6-12 二叉搜索树的操作集
唯一比较需要思考的删除操作: 被删除节点有三种情况: 1.叶节点,直接删除 2.只有一个子节点,将子节点替换为该节点,删除该节点. 3.有两个子节点,从右分支中找到最小节点,将其值赋给被删除节点的位置 ...
- PTA 7-2 二叉搜索树的结构(30 分)
7-2 二叉搜索树的结构(30 分) 二叉搜索树或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值:若它的右子树不空,则右子树上所有结点的值均大 ...
- 二叉搜索树的结构(30 分) PTA 模拟+字符串处理 二叉搜索树的节点插入和非递归遍历
二叉搜索树的结构(30 分) PTA 模拟+字符串处理 二叉搜索树的节点插入和非递归遍历 二叉搜索树的结构(30 分) 二叉搜索树或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则 ...
- 二叉搜索树的结构(30 分) PTA 模拟+字符串处理 二叉搜索树的节点插入和非递归遍历
二叉搜索树的结构(30 分) 二叉搜索树或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值:若它的右子树不空,则右子树上所有结点的值均大于它的根 ...
- 【Weiss】【第04章】二叉搜索树例程
[二叉搜索树] 随机生成时平均深度为logN,平均插入.删除和搜索时间都是O(logN). 可能存在的问题是数据不均衡,使树单边生长,极端情况下变成类似链表,最坏插入.删除.搜索时间O(N) 写这个例 ...
- 树&二叉树&二叉搜索树
树&二叉树 树是由节点和边构成,储存元素的集合.节点分根节点.父节点和子节点的概念. 二叉树binary tree,则加了"二叉"(binary),意思是在树中作区分.每个 ...
- 【数据结构与算法Python版学习笔记】树——平衡二叉搜索树(AVL树)
定义 能够在key插入时一直保持平衡的二叉查找树: AVL树 利用AVL树实现ADT Map, 基本上与BST的实现相同,不同之处仅在于二叉树的生成与维护过程 平衡因子 AVL树的实现中, 需要对每个 ...
- L3-1 二叉搜索树的结构 (30 分)
讲解的很不错的链接:https://blog.csdn.net/chudongfang2015/article/details/79446477#commentBox 题目链接:https://pin ...
随机推荐
- span设置padding无效
<span style="display:inline-block;padding-top:10px">测试<span> 给span加属性 display: ...
- rsync的几则tips(渗透技巧)
转自91ri 关于rsync rsync(remote synchronize)——Linux下实现远程同步功能的软件,能同步更新两处计算机的文件及目录.在同步文件时,可以保持源文件的权限.时间.软硬 ...
- linux驱动开发重点关注内容--摘自《嵌入式Linux驱动模板精讲与项目实践》
本文摘自本人拙著 <嵌入式Linux驱动模板精讲与项目实践> 初步看起来Linux设备驱动开发涉及内容非常多,而须要实现驱动的设备千差万别.事实上做一段时间驱动之后回首看来主要就是下面几点 ...
- 分享个免费的货币汇率API
先上API文档链接:https://www.juhe.cn/docs/api/id/23,支持人民币牌价.外汇汇率查询:数据仅供参考,交易时以银行柜台成交价为准. 人民币牌价 接口地址:http:// ...
- 2、C++ 的升级
1.内联函数 define 可以定义宏代码片段,但是,C++ 推荐使用内联函数替代宏代码片段. inline int f(int a, int b) { } 只需要在 函数定义(实现) ...
- Android微信分享功能实例+demo
Android微信分享功能实例 1 微信开放平台注册 2 获得appId,添加到程序中,并运行程序 3 使用应用签名apk生成签名,添加到微信开放平台应用签名,完成注册 4 测试分享功能. 有问题请留 ...
- Qt中的对象类型转换
char * 与 const char *的转换 char *ch1="hello11"; const char *ch2="hello22"; ch2 = c ...
- Spring Resource框架体系介绍
Resource介绍 在使用spring作为容器进行项目开发中会有很多的配置文件,这些配置文件都是通过Spring的Resource接口来实现加载,但是,Resource对于所有低级资源的访问都不够充 ...
- NorFlash linux分区分析
一般情况下,与板卡相关的内容都在bsp中(即arch/arm/mach-xxx/board-xxx.c)中,但norflash的分区直接放在norflash驱动中.由于norflash应用基于mtd, ...
- RethinkDB创始人教你怎样找到创业点子
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvemh1YmFpdGlhbg==/font/5a6L5L2T/fontsize/400/fill/I0JBQk ...