题目描述

Farmer John has N barren pastures (2 <= N <= 100,000) connected by N-1 bidirectional roads, such that there is exactly one path between any two pastures. Bessie, a cow who loves her grazing time, often complains about how there is no grass on the roads between pastures. Farmer John loves Bessie very much, and today he is finally going to plant grass on the roads. He will do so using a procedure consisting of M steps (1 <= M <= 100,000).

At each step one of two things will happen:

  • FJ will choose two pastures, and plant a patch of grass along each road in between the two pastures, or,

  • Bessie will ask about how many patches of grass on a particular road, and Farmer John must answer her question.

Farmer John is a very poor counter -- help him answer Bessie's questions!

给出一棵n个节点的树,有m个操作,操作为将一条路径上的边权加一或询问某条边的权值。

输入输出格式

输入格式:

  • Line 1: Two space-separated integers N and M

  • Lines 2..N: Two space-separated integers describing the endpoints of a road.

  • Lines N+1..N+M: Line i+1 describes step i. The first character of the line is either P or Q, which describes whether or not FJ is planting grass or simply querying. This is followed by two space-separated integers A_i and B_i (1 <= A_i, B_i <= N) which describe FJ's action or query.

输出格式:

  • Lines 1..???: Each line has the answer to a query, appearing in the same order as the queries appear in the input.

输入输出样例

输入样例#1:

4 6

1 4

2 4

3 4

P 2 3

P 1 3

Q 3 4

P 1 4

Q 2 4

Q 1 4

输出样例#1:

2

1

2


Solution

树剖板子题,关键是注意统计的是边的权值,不是点的权值。

只需要在每次修改或者查询的时候将其 LCA 的 id +1,即可。


代码

#include<bits/stdc++.h>
using namespace std;
const int maxn=100008;
int n,m;
struct sj{
int to;
int next;
}a[maxn*2];
int size,head[maxn]; void add(int x,int y)
{
a[++size].to=y;
a[size].next=head[x];
head[x]=size;
}
int dep[maxn],fa[maxn];
int top[maxn],son[maxn];
int siz[maxn]; void dfs(int x)
{
siz[x]=1;
for(int i=head[x];i;i=a[i].next)
{
int tt=a[i].to;
if(!siz[tt])
{
dep[tt]=dep[x]+1;
fa[tt]=x;
dfs(tt);
siz[x]+=siz[tt];
if(siz[tt]>siz[son[x]])
son[x]=tt;
}
}
} int id[maxn],num;
void dfs1(int x,int y)
{
top[x]=y;
id[x]=++num;
if(son[x])
dfs1(son[x],y);
for(int i=head[x];i;i=a[i].next)
{
int tt=a[i].to;
if(!top[tt])
if(tt!=son[x])
dfs1(tt,tt);
}
} int sgm[maxn*4],lazy[maxn*4];
void push_down(int node,int l,int r)
{
int kk=lazy[node],mid=(l+r)/2;
lazy[node*2]+=kk;
lazy[node*2+1]+=kk;
sgm[node*2]+=(mid-l+1)*kk;
sgm[node*2+1]+=(r-mid)*kk;
lazy[node]=0;
} void change(int node,int left,int right,int l,int r)
{
int v=1;
if(left>r||right<l)
return;
if(left>=l&&right<=r)
{
sgm[node]+=v*(right-left+1);
lazy[node]+=v;
return;
}
push_down(node,left,right);
int dist=(right+left)/2;
change(node*2,left,dist,l,r);
change(node*2+1,dist+1,right,l,r);
sgm[node]=sgm[node*2]+sgm[node*2+1];
return;
} int query(int node,int left,int right,int l,int r)
{
if(l>right||r<left)
return 0;
if(right<=r&&left>=l)
return sgm[node];
push_down(node,left,right);
int dist=(left+right)/2;
return query(node*2,left,dist,l,r)+query(node*2+1,dist+1,right,l,r);
}
void kuai(int x,int y)
{
while(top[x]!=top[y])
{
if(dep[top[x]]<dep[top[y]])swap(x,y);
change(1,1,n,id[top[x]],id[x]);
x=fa[top[x]];
}
if(dep[x]>dep[y])swap(x,y);
change(1,1,n,id[x]+1,id[y]);
return;
} int check(int x,int y)
{
int ans=0;
while(top[x]!=top[y])
{
if(dep[top[x]]<dep[top[y]])swap(x,y);
ans+=query(1,1,n,id[top[x]],id[x]);
x=fa[top[x]];
}
if(dep[x]>dep[y])swap(x,y);
ans+=query(1,1,n,id[x]+1,id[y]);
return ans;
} int main()
{
cin>>n>>m;
for(int i=1;i<n;i++)
{
int x,y;
scanf("%d%d",&x,&y);
add(x,y); add(y,x);
}
dep[1]=1;
dfs(1);
dfs1(1,1);
while(m--)
{
char ch;
int x,y;
cin>>ch; scanf("%d%d",&x,&y);
if(ch=='Q')
cout<<check(x,y)<<endl;
else
kuai(x,y);
}
}

[USACO11DEC] Grass Planting (树链剖分)的更多相关文章

  1. 洛谷 P3038 [USACO11DEC]牧草种植Grass Planting(树链剖分)

    题解:仍然是无脑树剖,要注意一下边权,然而这种没有初始边权的题目其实和点权也没什么区别了 代码如下: #include<cstdio> #include<vector> #in ...

  2. 【LuoguP3038/[USACO11DEC]牧草种植Grass Planting】树链剖分+树状数组【树状数组的区间修改与区间查询】

    模拟题,可以用树链剖分+线段树维护. 但是学了一个厉害的..树状数组的区间修改与区间查询.. 分割线里面的是转载的: ----------------------------------------- ...

  3. spoj - Grass Planting(树链剖分模板题)

    Grass Planting 题意 给出一棵树,树有边权.每次给出节点 (u, v) ,有两种操作:1. 把 u 到 v 路径上所有边的权值加 1.2. 查询 u 到 v 的权值之和. 分析 如果这些 ...

  4. 树链剖分好(du)题(liu)选做

    1.luogu P4315 月下"毛景树" 题目链接 前言: 这大概是本蒟蒻A掉的题里面码量最大的一道题了.我自认为码风比较紧凑,但还是写了175行. 从下午2点多调到晚上8点.中 ...

  5. BZOJ 3626: [LNOI2014]LCA [树链剖分 离线|主席树]

    3626: [LNOI2014]LCA Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2050  Solved: 817[Submit][Status ...

  6. BZOJ 1984: 月下“毛景树” [树链剖分 边权]

    1984: 月下“毛景树” Time Limit: 20 Sec  Memory Limit: 64 MBSubmit: 1728  Solved: 531[Submit][Status][Discu ...

  7. codevs 1228 苹果树 树链剖分讲解

    题目:codevs 1228 苹果树 链接:http://codevs.cn/problem/1228/ 看了这么多树链剖分的解释,几个小时后总算把树链剖分弄懂了. 树链剖分的功能:快速修改,查询树上 ...

  8. 并查集+树链剖分+线段树 HDOJ 5458 Stability(稳定性)

    题目链接 题意: 有n个点m条边的无向图,有环还有重边,a到b的稳定性的定义是有多少条边,单独删去会使a和b不连通.有两种操作: 1. 删去a到b的一条边 2. 询问a到b的稳定性 思路: 首先删边考 ...

  9. 树链剖分+线段树 CF 593D Happy Tree Party(快乐树聚会)

    题目链接 题意: 有n个点的一棵树,两种操作: 1. a到b的路径上,给一个y,对于路径上每一条边,进行操作,问最后的y: 2. 修改某个条边p的值为c 思路: 链上操作的问题,想树链剖分和LCT,对 ...

随机推荐

  1. MySQL基础教程——mysql脚本编写

    SQL,结构化查询语言,既是对数据库进行操作的语言,也是数据库脚本文件的扩展名. 要求:新建一个名为 library 的数据库,包含 book.reader 两张表,根据自己的理解安排表的内容并插入数 ...

  2. 2018.4.6 java交易记录系统

    题目 ###1.交易明细文件内容如下例: 客户号 姓名 所述机构号 性别 帐号 发生时间 发生额 000001|刘德华|0000|1|4155990188888888|20060720200005|3 ...

  3. 用fmt标签对EL表达式取整

    本篇文章转载自:https://blog.csdn.net/u013400939/article/details/47948541 一般来说我们是无法实现EL表达式取整的.对于EL表达式的除法而言,他 ...

  4. 01_9_ServletContext

    01_9_ServletContext 1. 例子 public void doGet(HttpServletRequest request, HttpServletResponse response ...

  5. sqlserver的实例名忘记了

    电脑图标右击/管理/服务和应用程序/服务 也可以直接services.msc打开 打开服务,找到sqlserver的服务,这个服务括号中的名称就是实例名了,但是要加上localhost,也就是loca ...

  6. Vue和MVVM对应关系

    Vue和MVVM的对应关系 Vue是受MVVM启发的,那么有哪些相同之处呢?以及对应关系? MVVM(Model-view-viewmodel) MVVM还有一种模式model-view-binder ...

  7. 【贪心】bzoj1577: [Usaco2009 Feb]庙会捷运Fair Shuttle

    一类经典的线段贪心 Description 公交车一共经过N(1<=N<=20000)个站点,从站点1一直驶到站点N.K(1<=K<=50000)群奶牛希望搭乘这辆公交车.第i ...

  8. 01创建线程CreateThread和_beginthreadex

    Windows多线程之线程创建 一. 线程创建函数 CreateThread 1. 函数原型 HANDLE WINAPI CreateThread( _In_opt_ LPSECURITY_ATTRI ...

  9. ActiveXObject

    只有IE浏览器才支持这个构造函数,可以用这个来判断,当前是否为IE浏览器 var isIE=!!window.ActiveXObject; 在IE的不同版本下,要创建XHR对象,也需要通过这个构造函数 ...

  10. 配置wamp开发环境

    新手在PHP网站建设时,会使用使用PHP的集成开发环境,这样利于开发和理解!但是做为一个网站开发人员,会独立的配置开发环境这是必须的……因为集成的环境毕竟是固定的,不利于自己的开发.好,废话少说咱现在 ...