BZOJ1068 [SCOI2007]压缩 【区间dp】
题目
给一个由小写字母组成的字符串,我们可以用一种简单的方法来压缩其中的重复信息。压缩后的字符串除了小
写字母外还可以(但不必)包含大写字母R与M,其中M标记重复串的开始,R重复从上一个M(如果当前位置左边没
有M,则从串的开始算起)开始的解压结果(称为缓冲串)。 bcdcdcdcd可以压缩为bMcdRR,下面是解压缩的过程

另一个例子是abcabcdabcabcdxyxyz可以被压缩为abcRdRMxyRz。
输入格式
输入仅一行,包含待压缩字符串,仅包含小写字母,长度为n。
输出格式
输出仅一行,即压缩后字符串的最短长度。
输入样例
bcdcdcdcdxcdcdcdcd
输出样例
12
提示
在第一个例子中,解为aaaRa,在第二个例子中,解为bMcdRRxMcdRR。
【限制】
100%的数据满足:1<=n<=50 100%的数据满足:1<=n<=50
题解
我们可以看做最左端有一个M
我们设\(f[l][r][0|1]\)表示区间\([l,r]\)在开头有M的情况下,区间内有\((1)\)或没有\((0)\)M的情况下的最短串
如果\([l,r]\)区间呈现\(AA\)形式,就可以令
\]
然后枚举区间断点:
\]
对于\(1\)的转移,我们枚举中间的M
\]
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define LL long long int
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
using namespace std;
const int maxn = 55,maxm = 100005,INF = 1000000000;
int f[maxn][maxn][2],n;
char s[maxn];
bool check(int l,int r){
if ((r - l + 1) & 1) return false;
int mid = l + ((r - l + 1) >> 1) - 1;
for (int i = 0; l + i <= mid; i++) if (s[l + i] != s[mid + 1 + i])
return false;
return true;
}
int main(){
scanf("%s",s + 1); n = strlen(s + 1);
fill(f[0][0],f[0][0] + 2 * maxn * maxn,INF);
for (int i = 1; i <= n; i++) f[i][i][0] = 1;
for (int len = 2; len <= n; len++){
for (int i = 1; i + len - 1 <= n; i++){
int j = i + len - 1;
if (check(i,j)) f[i][j][0] = f[i][i + ((j - i + 1) >> 1) - 1][0] + 1;
for (int k = i; k < j; k++)
f[i][j][0] = min(f[i][j][0],f[i][k][0] + j - k);
for (int k = i; k < j; k++)
f[i][j][1] = min(f[i][j][1],min(f[i][k][1],f[i][k][0]) + 1 + min(f[k + 1][j][0],f[k + 1][j][1]));
}
}
printf("%d\n",min(f[1][n][0],f[1][n][1]));
return 0;
}
BZOJ1068 [SCOI2007]压缩 【区间dp】的更多相关文章
- 【BZOJ-1068】压缩 区间DP
1068: [SCOI2007]压缩 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 1001 Solved: 615[Submit][Status][ ...
- bzoj 1068 [SCOI2007]压缩 区间dp
[SCOI2007]压缩 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 1644 Solved: 1042[Submit][Status][Discu ...
- B1068 [SCOI2007]压缩 区间dp
这个题我状态想对了,但是转移错了...dp的代码难度都不大,但是思考含量太高了..不会啊,我太菜了. 其实这个题就是一个正常的区间dp,中间多了一个特判的转移就行了. 题干: Description ...
- [SCOI2007]压缩 区间dp
明显是个区间dp,但是我区间dp就是个渣... f[i][j]表示区间i到j最短的字符长度:假设前面加了个M,所以初始化f[i][i]=2;当然最开始是不算M的,所以f[1][1]=1;然后就可以区间 ...
- 洛谷P2470 [SCOI2007]压缩(区间dp)
题意 题目链接 Sol 神仙题Orz 考虑区间dp,如果我们只设\(f[l][r]\)表示\(s_{lr}\)被压缩的最小长度,而不去关心内部\(M\)分布的话,可能在转移的时候转移出非法状态 因此考 ...
- BZOJ1068 [SCOI2007]压缩 区间动态规划 字符串
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1068 题目概括 (其实是复制的) 给一个由小写字母组成的字符串,我们可以用一种简单的方法来压缩其中 ...
- ACM学习历程—HDU1584 蜘蛛牌(动态规划 && 状态压缩 || 区间DP)
Description 蜘蛛牌是windows xp操作系统自带的一款纸牌游戏,游戏规则是这样的:只能将牌拖到比她大一的牌上面(A最小,K最大),如果拖动的牌上有按顺序排好的牌时,那么这些牌也跟着一起 ...
- 洛谷P2470||bzoj1068 [SCOI2007]压缩
bzoj1068 洛谷P2470 区间dp入门题?只要注意到每个M“管辖”的区间互不相交即可 错误记录:有点小坑,比如aaaacaaaac最优解为aRRcR(意会坑在哪里),踩了一次 #include ...
- BZOJ1068: [SCOI2007]压缩
... 1068: [SCOI2007]压缩 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 909 Solved: 566[Submit][Statu ...
- 状态压缩---区间dp第一题
标签: ACM 题目 Gappu has a very busy weekend ahead of him. Because, next weekend is Halloween, and he is ...
随机推荐
- 用户输入和while循环
函数input()的工作原理 message=input('Tell me something,and I will repeat it back to you:') print(message) 编 ...
- 主成分分析法(PCA)答疑
问:为什么要去均值? 1.我认为归一化的表述并不太准确,按统计的一般说法,叫标准化.数据的标准化过程是减去均值并除以标准差.而归一化仅包含除以标准差的意思或者类似做法.2.做标准化的原因是:减去均值等 ...
- java基础—异常处理
一.异常的概念 异常指的是运行期出现的错误,也就是当程序开始执行以后执行期出现的错误.出现错误时观察错误的名字和行号最为重要.
- ps基础实例
一:合并多个图片 1.先新件一个图片)CTRL+N),大小定成你想要的大小 2.把你要放入的照片用PS打开 3.把放入的照片用移动工具(V)拉到新件的图片里面 4.用CTRL+T调整大小(按住SHIF ...
- NOIP模拟赛 czy的后宫6
czy的后宫6 题目描述 众所周知的是丧尸czy有很多妹子(虽然很多但是质量不容乐观QAQ),今天czy把n个妹子排成一行来检阅.但是czy的妹子的质量实在……所以czy看不下去了.检阅了第i个妹子会 ...
- C++输入密码不显示明文
之前有遇到需求说输入密码不显示明文,但同时会有一些其他问题,暂时没做,如今经过尝试可以实现,但是得先知道要输入的是密码.主要利用的getch()函数的不回显特点.需要注意的是这个函数不是标准函数,而且 ...
- sql 单表/多表查询去除重复记录
单表distinct 多表group by group by 必须放在 order by 和 limit之前,不然会报错 *************************************** ...
- Head First Python (二)
if...else... 1 movies = ["The Holy Grail",1975,"Terry Jones & Terry Gilliam" ...
- 学习ucosii要用到的几本书
转自:http://bbs.elecfans.com/jishu_551275_1_1.html 1.嵌入式实时操作系统μC/OS-II(第2版) 邵贝贝 等译 北京航空航天大学出版社 ...
- hdu-1231 连续最大子序列(动态规划)
Time limit1000 ms Memory limit32768 kB 给定K个整数的序列{ N1, N2, ..., NK },其任意连续子序列可表示为{ Ni, Ni+1, ..., Nj ...