HDU 5402 : Travelling Salesman Problem
题目大意:n*m的格子,从左上角走到右下角,每个格子只能走一遍,每个格子上有一个非负数,要让途径的数字和最大,最后要输出路径
思路:显然茹果n,m有一个是奇数的话所有格子的数字都能被我吃到,如果都是偶数呢?我把棋盘黑白染色,显然其中染成黑色的点我都是能不取一个,剩下的点我每个都取.
比赛的时候gkp说能不能取两个白色的块反而比只取一个黑色块结果大,想了下是不会的,证明很简单,n,m都是偶数那么黑色块和白色快的数量是相同的,每次只能上下左右走,也就是只能从一个颜色走到另一个颜色,如果能够避开两块或者更多的黑块而不经过白块,那么经过格子的路线必然不能能出现黑白黑白的序列,发现这个后证实了我的想法,比赛时CP敲了这题的代码,下面是我赛后AC的
#include<iostream>
#include<cstdio>
#include<cstring>
#define maxn 5000009
#define ll long long
using namespace std;
const int dx[]={,,,,-};
const int dy[]={,,-,,};
const char di[]={'','R','L','D','U'};
int a[][],n,m,d=,visit[][];
void dfs(int x,int y,int l,int r,int xt,int yt)
{
if(x==n && y==r)return;
d = (d%)+;
visit[x][y] = ;
for(int i=;i<=;i++)
{
int xx = x + dx[i], yy = y + dy[i];
if(xx<||xx>n||visit[xx][yy]||yy<l || yy > r ||(xx==xt && yy == yt))continue;
printf("%c",di[i]);
dfs(xx,yy,l,r,xt,yt);
d = i;
break;
}
}
int main()
{
while(scanf("%d%d",&n,&m)!=EOF)
{
memset(visit,,sizeof(visit));
int sum = ;
for(int i=;i<=n;i++)
{
for(int j=;j<=m;j++)
{
scanf("%d",&a[i][j]);
sum += a[i][j];
}
}
if(n&)
{
printf("%d\n",sum);
int u = (n-)>>;
while(u--)
{
for(int i=;i<m;i++)printf("R");
printf("D");
for(int i=;i<m;i++)printf("L");
printf("D");
}
for(int i=;i<m;i++)printf("R");
puts("");
}
else if(m&)
{
printf("%d\n",sum);
int u = (m-)>>;
while(u--)
{
for(int i=;i<n;i++)printf("D");
printf("R");
for(int i=;i<n;i++)printf("U");
printf("R");
}
for(int i=;i<n;i++)printf("D");
puts("");
}
else
{
int x=,y=,minx = 0x3f3f3f3f;
for(int i=;i<=n;i++)
{
for(int j=;j<=m;j++)if((i+j)&)
{
if(minx>a[i][j])
{
minx=a[i][j];
x=i;
y=j;
}
}
}
printf("%d\n",sum-minx);
int u = (y-)>>,t=u;
while(t--)
{
for(int i=;i<n;i++)printf("D");
printf("R");
for(int i=;i<n;i++)printf("U");
printf("R");
}
d=;
dfs(,u*+,u*+,u*+,x,y);
int v = m-u*-;
v>>=;t=v;
while(t--)
{
printf("R");
for(int i=;i<n;i++)printf("U");
printf("R");
for(int i=;i<n;i++)printf("D");
}
puts("");
}
}
return ;
}
HDU 5402 : Travelling Salesman Problem的更多相关文章
- 构造 - HDU 5402 Travelling Salesman Problem
Travelling Salesman Problem Problem's Link: http://acm.hdu.edu.cn/showproblem.php?pid=5402 Mean: 现有一 ...
- HDU 5402 Travelling Salesman Problem (构造)(好题)
大致题意:n*m的非负数矩阵,从(1,1) 仅仅能向四面走,一直走到(n,m)为终点.路径的权就是数的和.输出一条权值最大的路径方案 思路:因为这是非负数,要是有负数就是神题了,要是n,m中有一个是奇 ...
- HDU 5402 Travelling Salesman Problem (模拟 有规律)(左上角到右下角路径权值最大,输出路径)
Travelling Salesman Problem Time Limit: 3000/1500 MS (Java/Others) Memory Limit: 65536/65536 K (J ...
- HDU 5402 Travelling Salesman Problem(棋盘染色 构造 多校啊)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5402 Problem Description Teacher Mai is in a maze wit ...
- HDU 5402 Travelling Salesman Problem(多校9 模拟)
题目链接:pid=5402">http://acm.hdu.edu.cn/showproblem.php?pid=5402 题意:给出一个n×m的矩阵,位置(i.j)有一个非负权值. ...
- hdu 5402 Travelling Salesman Problem(大模拟)
Problem Description Teacher Mai ,) to the bottom right corner (n,m). He can choose one direction and ...
- hdu 5402 Travelling Salesman Problem (技巧,未写完)
题意:给一个n*m的矩阵,每个格子中有一个数字,每个格子仅可以走一次,问从(1,1)走到(n,m) 的路径点权之和. 思路: 想了挺久,就是有个问题不能短时间证明,所以不敢下手. 显然只要n和m其中一 ...
- HDU 5402(Travelling Salesman Problem-构造矩阵对角最长不相交路径)
Travelling Salesman Problem Time Limit: 3000/1500 MS (Java/Others) Memory Limit: 65536/65536 K (J ...
- HDOJ 5402 Travelling Salesman Problem 模拟
行数或列数为奇数就能够所有走完. 行数和列数都是偶数,能够选择空出一个(x+y)为奇数的点. 假设要空出一个(x+y)为偶数的点,则必须空出其它(x+y)为奇数的点 Travelling Salesm ...
随机推荐
- 【转】iOS学习笔记(十七)——文件操作(NSFileManager)
iOS的沙盒机制,应用只能访问自己应用目录下的文件.iOS不像android,没有SD卡概念,不能直接访问图像.视频等内容.iOS应用产生的内容,如图像.文件.缓存内容等都必须存储在自己的沙盒内.默认 ...
- .vue公共组件裁减导航
场景: 有一个公共头部和底部,vue搭建的框架,在app.vue里写的公共方法,首页是个登录页面,不需要公共部分,在这基础上进行公共部分的显示隐藏. 即注册页.登录页.404页面都不要导航 代码: ( ...
- 伪基站SSRP
伪基站的基本构成包括一台发射主机.一台笔记本电脑.一根天线.一部手机和电源.其中,手机用来测得频点,即某个区域运营商正规基站的频点,然后再把频点和短信内容输入到电脑安装好的程序,通过发射主机和天线进行 ...
- 删除sqlserver管理器登录信息缓存
在Windows10下测试有效: C:\Users\<user>\AppData\Roaming\Microsoft\Microsoft SQL Server\100\Tools\Shel ...
- iOS下的2D仿射变换机制(CGAffineTransform相关)
仿射变换简介 仿射变换源于CoreGraphics框架,主要作用是绘制2D级别的图层,几乎所有iOS设备屏幕上的界面元素都是由CoreGraphics来负责绘制.而我们要了解的2D仿射变换是其下负责二 ...
- zabbix3.2安装手册
Alexei Vladishev创建了Zabbix项目,当前处于活跃开发状态,Zabbix SIA提供支持. Zabbix是一个企业级的.开源的.分布式的监控套件 Zabbix可以监控网络和服务的监控 ...
- destoon去除编辑器替换图片删除原图功能,删除信息删除相关图片功能
去除这些功能会造成大量垃圾图片,但是客户存在大量复制内容,其中图片一样,为了防止客户替换其中一个图片或者删除信息 造成其他复制信息图片丢失 去除文章模型级联图片功能. 对应模块class.php se ...
- python3 简单服务器监控,自动发送邮件
import smtplibfrom email.mime.text import MIMETextfrom email.mime.multipart import MIMEMultipartimpo ...
- LeetCode(268) Missing Number
题目 Given an array containing n distinct numbers taken from 0, 1, 2, -, n, find the one that is missi ...
- SDUSToj第十一次作业源代码格式问题
Problem I: 源代码的格式 Time Limit: 1 Sec Memory Limit: 64 MBSubmit: 1471 Solved: 634 [Submit][Status][W ...