题目链接

  这是一道考思维的好题。

  一开始设f[i][j]是i个点刚好j层的方案数,死活调不出来,看题解发现可以改为<=j层的方案数,最后输出f[n][m]-f[n][m-1]就好了。

  对于计算考虑左右子树分配,设i个点分给左子树,j个点分配右子树,注意枚举顺序,乘法原理搞一搞就好。

  我拼尽全力只得了57分,qwq。

  

#include<cstdio>
#include<cstring>
#include<cctype>
#include<algorithm>
#include<cstdlib>
#include<cmath>
#define mod 9901
#define maxn 250
using namespace std;
inline long long read(){
long long num=,f=;
char ch=getchar();
while(!isdigit(ch)){
if(ch=='-') f=-;
ch=getchar();
}
while(isdigit(ch)){
num=num*+ch-'';
ch=getchar();
}
return num*f;
} int f[maxn][maxn];
int s[maxn][maxn];
int n,m; int main(){
n=read(),m=read();
for(int i=;i<=m;++i) f[][i]=;
for(int j=;j<=m;++j){
for(int i=;i<=n;++i){
int &o=f[i][j];
for(int k=;k<i-;++k) o=(o+f[k][j-]*f[i-k-][j-])%mod;
}
}
printf("%d\n",(f[n][m]-f[n][m-]+mod)%mod);
return ;
}

【Luogu】P1472奶牛家谱(DP)的更多相关文章

  1. 洛谷P1472 奶牛家谱 Cow Pedigrees

    P1472 奶牛家谱 Cow Pedigrees 102通过 193提交 题目提供者该用户不存在 标签USACO 难度普及+/提高 提交  讨论  题解 最新讨论 暂时没有讨论 题目描述 农民约翰准备 ...

  2. P1472 奶牛家谱 Cow Pedigrees

    题意:问你指定二叉树有几种 1.高度为k 2.节点数为n 3.每个点的度为0或2 爆搜------->30分QAQ 首先,因为每个节点度为0或2, 所以如果n是偶数直接输出0就行了吧(嘿嘿) 如 ...

  3. 洛谷 P1472 奶牛家谱 Cow Pedigrees 题解

    题面 这道题我觉得是个不错的题: 根据题意可以较清晰的发现ans只和n和k有关:(因为输入的只有这两个数啊~): 那么设f[i][j]表示前i层用了j个节点的方案数,g[i][j]表示深度小于等于i并 ...

  4. 奶牛抗议 DP 树状数组

    奶牛抗议 DP 树状数组 USACO的题太猛了 容易想到\(DP\),设\(f[i]\)表示为在第\(i\)位时方案数,转移方程: \[ f[i]=\sum f[j]\;(j< i,sum[i] ...

  5. P2340 奶牛会展 DP 背包

    P2340 奶牛会展 DP \(n\)头牛,每头牛有智商\(s[i]\)情商\(f[i]\),问如何从中选择几头牛使得智商情商之和最大 且 情商之和.智商之和非负 \(n\le 400,-10^3\l ...

  6. luogu P2345 奶牛集会

    二次联通门 : luogu P2345 奶牛集会 /* luogu P2345 奶牛集会 权值线段树 以坐标为下标, 坐标为值建立线段树 对奶牛按听力由小到大排序 对于要查的牛 每次第i次放入奶牛起作 ...

  7. 【dp】奶牛家谱 Cow Pedigrees

    令人窒息的奶牛题 题目描述 农民约翰准备购买一群新奶牛. 在这个新的奶牛群中, 每一个母亲奶牛都生两个小奶牛.这些奶牛间的关系可以用二叉树来表示.这些二叉树总共有N个节点(3 <= N < ...

  8. 【Luogu】P1868饥饿的奶牛(DP)

    题目链接 话说我存一些只需要按照一个关键字排序的双元素结构体的时候老是喜欢使用链式前向星…… DP.f[i]表示前i个位置奶牛最多能吃到的草.转移方程如下: f[i]=f[i-]; f[i]=max( ...

  9. LUOGU P2344 奶牛抗议 (树状数组优化dp)

    传送门 解题思路 树状数组优化dp,f[i]表示前i个奶牛的分组的个数,那么很容易得出$f[i]=\sum\limits_{1\leq j\leq i}f[j-1]*(sum[i]\ge sum[j- ...

随机推荐

  1. Windows Experience Index

    The Windows Experience is still there--even in build 9860.  However, the GUI was retired with Window ...

  2. Xamarin 常见问题解决方案汇总

    出现如下提示,错误: 找不到或无法加载主类 com.sun.tools.javac.MainMSB6006: 或 閿欒: 绋嬪簭鍖卆ndroid.support.v4.view.ViewPager涓嶅 ...

  3. codeforce Gym 100570B ShortestPath Query (最短路SPFA)

    题意:询问单源最短路径,每条边有一个颜色,要求路径上相邻边的颜色不能相同,无重边且边权为正. 题解:因为路径的合法性和边的颜色有关, 所以在做spfa的时候,把边丢到队列中去,松弛的时候注意判断一下颜 ...

  4. 字符编码ANSI和ASCII区别、Unicode和UTF-8区别

    ANSI码ANSI编码是一种对ASCII码的拓展:ANSI编码用0x00~0x7f (即十进制下的0到127)范围的1 个字节来表示 1 个英文字符,超出一个字节的 0x80~0xFFFF 范围来表示 ...

  5. VS2013常用快捷键[转] 注释 Ctrl+K - C 和 k - u

    VS2013常用快捷键你敢不会?   F1 帮助文档 F5 运行 F12 跳转到定义 F11 单步调试 Shift+F5 停止调试 Ctrl+滚轮 放大缩小当前视图 Ctrl+L 删除当前行 Ctrl ...

  6. Linux学习日记:第二天

    今天学习vi编辑命令: root@ubuntu:vi hello.java 使用到的命令: 插入命令: a 和 i:在当前光标前或后插入文本(A 和 I 分别在当前行行末或行首插入文本):  o 和  ...

  7. iOS应用架构谈part4-本地持久化方案及动态部署

    前言 嗯,你们要的大招.跟着这篇文章一起也发布了CTPersistance和CTJSBridge这两个库,希望大家在实际使用的时候如果遇到问题,就给我提issue或者PR或者评论区.每一个issue和 ...

  8. linux关于软件安装和测试

    软件都是盘上的安装之前确保已挂载完毕 1.安装软件 rpm -ivh httpd-2*   2.修改配置文件 vi /etc/httpd/conf/httpd.conf listen 8888   3 ...

  9. PHP将unicode转utf8最简法

    最近开发时遇到Unicode编码问题,找了半天才知道PHP并没有Unicode转码函数,终于发现用一行PHP代码解决的方案: $str = '{"success":true,&qu ...

  10. 解决linux不能解压rar格式压缩包

    1download rarlinux-x64-5.3.0.tar.gz data package 2.tar xvf rarlinux-64-5.3.0.tar.gz 3. cd rar and th ...