线段树。支持区间加、区间乘、区间查询和。

标记下移还有取模要注意。

  • var

  • n,p,q,i,s,t:longint;

  • a:int64;

  • num,n1,n2,n3:array[0..500000] of int64;

  • procedure build(o,l,r:longint);

  • var m,i:longint;

  • begin

  • m:=(l+r) div 2;

  • if l=r then

  • begin

  • n1[o]:=num[l];

  • n2[o]:=num[l];

  • end

  • else

  • begin

  • build(o*2,l,m);

  • build(o*2+1,m+1,r);

  • end;

  • if o>1 then n1[o div 2]:=(n1[o div 2]+n1[o]) mod p;

  • end;

  • procedure add(o,l,r:longint);

  • var m,i:longint;

  • begin

  • m:=(l+r) div 2;

  • if l<>r then

  • begin

  • n1[o*2]:=(n1[o*2]*n3[o]+n2[o]*((m-l+1) mod p)) mod p;

  • n2[o*2]:=(n2[o*2]*n3[o]+n2[o]) mod p;

  • n3[o*2]:=(n3[o*2]*n3[o]) mod p;

  • n1[o*2+1]:=(n1[o*2+1]*n3[o]+n2[o]*((r-m) mod p)) mod p;

  • n2[o*2+1]:=(n2[o*2+1]*n3[o]+n2[o]) mod p;

  • n3[o*2+1]:=(n3[o*2+1]*n3[o]) mod p;

  • n2[o]:=0;n3[o]:=1;

  • end;

  • if (s<=l)and(r<=t) then

  • begin

  • n1[o]:=(n1[o]+a*((r-l+1) mod p)) mod p;

  • n2[o]:=(n2[o]+a) mod p;

  • end

  • else

  • begin

  • if s<m+1 then add(o*2,l,m);

  • if m<t then add(o*2+1,m+1,r);

  • n1[o]:=(n1[o*2]+n1[o*2+1]) mod p;

  • end;

  • end;

  • procedure che(o,l,r:longint);

  • var m,i:longint;

  • begin

  • m:=(l+r) div 2;

  • if l<>r then

  • begin

  • n1[o*2]:=(n1[o*2]*n3[o]+n2[o]*((m-l+1) mod p)) mod p;

  • n2[o*2]:=(n2[o*2]*n3[o]+n2[o]) mod p;

  • n3[o*2]:=(n3[o*2]*n3[o]) mod p;

  • n1[o*2+1]:=(n1[o*2+1]*n3[o]+n2[o]*((r-m) mod p)) mod p;

  • n2[o*2+1]:=(n2[o*2+1]*n3[o]+n2[o]) mod p;

  • n3[o*2+1]:=(n3[o*2+1]*n3[o]) mod p;

  • n2[o]:=0;n3[o]:=1;

  • end;

  • if (s<=l)and(r<=t) then

  • begin

  • n1[o]:=(n1[o]*a) mod p;

  • n2[o]:=(n2[o]*a) mod p;

  • n3[o]:=(n3[o]*a) mod p;

  • end

  • else

  • begin

  • if s<m+1 then che(o*2,l,m);

  • if m<t then che(o*2+1,m+1,r);

  • n1[o]:=(n1[o*2]+n1[o*2+1]) mod p;

  • end;

  • end;

  • function que(o,l,r:longint):int64;

  • var m,i:longint;

  • begin

  • m:=(l+r) div 2;

  • que:=0;

  • if l<>r then

  • begin

  • n1[o*2]:=(n1[o*2]*n3[o]+n2[o]*((m-l+1) mod p)) mod p;

  • n2[o*2]:=(n2[o*2]*n3[o]+n2[o]) mod p;

  • n3[o*2]:=(n3[o*2]*n3[o]) mod p;

  • n1[o*2+1]:=(n1[o*2+1]*n3[o]+n2[o]*((r-m) mod p)) mod p;

  • n2[o*2+1]:=(n2[o*2+1]*n3[o]+n2[o]) mod p;

  • n3[o*2+1]:=(n3[o*2+1]*n3[o]) mod p;

  • n2[o]:=0;n3[o]:=1;

  • end;

  • if (s<=l)and(r<=t) then que:=n1[o]

  • else

  • begin

  • if s<m+1 then que:=(que+que(o*2,l,m)) mod p;

  • if m<t then que:=(que+que(o*2+1,m+1,r)) mod p;

  • end;

  • end;

  • begin

  • read(n,p);

  • for i:=1 to n do read(num[i]);

  • for i:=1 to n do num[i]:=num[i] mod p;

  • for i:=1 to 3*n do n3[i]:=1;

  • build(1,1,n);

  • read(q);

  • for i:=1 to q do

  • begin

  • read(a);

  • case a of

  • 1:begin

  • read(s,t,a);

  • a:=a mod p;

  • che(1,1,n);

  • end;

  • 2:begin

  • read(s,t,a);

  • a:=a mod p;

  • add(1,1,n);

  • end;

  • 3:begin

  • read(s,t);

  • writeln(que(1,1,n));

  • end;

  • end;

  • end;

  • end.

我写的有些麻烦。。。

BZOJ-1798 维护序列的更多相关文章

  1. bzoj 1798 维护序列seq

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1798 题解: 高级一点的线段树,加上了区间乘法运算,则需要增加一个数组mulv记录乘的因数 ...

  2. bzoj 1798 维护序列seq 线段树

    裸的线段树,注意标签下放就行了 多么痛的领悟,一定要开int64 /************************************************************** Pro ...

  3. [BZOJ 1500] 维护序列

    Link: BZOJ 1500 传送门 Solution: 可能平衡树维护序列的所有操作都在这了吧…… 对序列的维护$fhq treap$和$Splay$都能做 有几个注意点: 1.维护序列时始终记得 ...

  4. BZOJ 1798: [Ahoi2009]Seq 维护序列seq( 线段树 )

    线段树.. 打个 mul , add 的标记就好了.. 这个速度好像还挺快的...( 相比我其他代码 = = ) 好像是#35.. ---------------------------------- ...

  5. bzoj 1798: [Ahoi2009]Seq 维护序列seq (线段树 ,多重标记下放)

    1798: [Ahoi2009]Seq 维护序列seq Time Limit: 30 Sec  Memory Limit: 64 MBSubmit: 7773  Solved: 2792[Submit ...

  6. bzoj 1798: [Ahoi2009]Seq 维护序列seq 线段树 区间乘法区间加法 区间求和

    1798: [Ahoi2009]Seq 维护序列seq Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeO ...

  7. Bzoj 1798: [Ahoi2009]Seq 维护序列seq(线段树区间操作)

    1798: [Ahoi2009]Seq 维护序列seq Time Limit: 30 Sec Memory Limit: 64 MB Description 老师交给小可可一个维护数列的任务,现在小可 ...

  8. 【BZOJ】【1798】【AHOI2009】Seq维护序列

    线段树 属于线段树中级应用吧…… 要打两种标记:乘法和加法标记.一开始我想着可以像只有加法标记那样,永不下传,查询的时候依次累加就好了.后来发现不会写……只好每次update的时候……遇到标记!下传! ...

  9. 1798: [Ahoi2009]Seq 维护序列seq

    1798: [Ahoi2009]Seq 维护序列seq Time Limit: 30 Sec  Memory Limit: 64 MBSubmit: 2930  Solved: 1087[Submit ...

  10. bzoj 维护序列seq(双标记线段树)

    Seq 维护序列seq Time Limit: 30 Sec  Memory Limit: 64 MBSubmit: 4184  Solved: 1518[Submit][Status][Discus ...

随机推荐

  1. Unity runtime性能分析器

    一. Profiler: 1. CPU Usage A. WaitForTargetFPS: Vsync(垂直同步)功能所,即显示当前帧的CPU等待时间 B. Overhead: Profiler总体 ...

  2. MySQL8 Authentication plugin 'caching_sha2_password' cannot be loaded

    这是因为mysql8 和以前密码的验证方式不同,可以先从命令行进入     MySQL  -uroot -p       然后输入 ALTER USER 'root'@'localhost' IDEN ...

  3. PWD简介与妙用(一个免费、随时可用的Docker实验室)

    转载自 https://baiyue.one/archives/472.html 本文介绍下 PWD 的历史,并依据本站最近学习心得,经过多次尝试,终于打通了 Docker 与常规宝塔面板搭建,因此, ...

  4. 【转】瓜娃(guava)的API快速熟悉使用

    http://www.cnblogs.com/snidget/archive/2013/02/05/2893344.html 1,大纲 让我们来熟悉瓜娃,并体验下它的一些API,分成如下几个部分: I ...

  5. WINDOWS-API:关于线程 GetCurrentThread、GetCurrentThreadId、GetCurrentProcess、GetCurrentProcessId

    {返回当前线程的虚拟句柄} GetCurrentThread: THandle; {返回当前线程 ID} GetCurrentThreadId: DWORD; {返回当前进程的虚拟句柄} GetCur ...

  6. Word2vec资料

    Word2vec 很好的资料 Word2Vec-知其然知其所以然   https://www.zybuluo.com/Dounm/note/591752 Word2Vec数学原理讲解 http://w ...

  7. c#List结合IEqualityComparer求交集

    List元素类: public class MultiPointSearchingRet { public int ID { get; set; } public string PlateNumber ...

  8. 使用HTML5语义标签时要注意的问题

    header,nav,section,article,aside,figue,figcaption,footer以上这些标签(除figcaption标签外)都是块级标签,为了让这些标签及元素在所有的浏 ...

  9. stataic 变量

    static 是静态变量的的类型说明符 静态变量属于静态存储方式,(外部变量也是静态存储方式) 静态的局部变量 静态局部变量属于静态存储方式,它具有以下特点: (1)静态局部变量在函数内定义 它的生存 ...

  10. OI杂记

    从今天开始记录一下为数不多天的OI历程 8.25 上 今天举行了难得的五校联考,模拟noip,题目的解压密码竟然是$aKnoIp2o18$,对你没有看错!!! 7:50老师?啊啊啊啊,收不到题目啊,还 ...