NOJ——1669xor的难题(详细的树状数组扩展—异或求和)
[1669] xor的难题
- 时间限制: 1000 ms 内存限制: 65535 K
- 问题描述
- 最近Alex学长有个问题被困扰了很久,就是有同学给他n个数,然后给你m个查询,然后每个查询给你l和r(左下标和右下标),然后问你每个查询l到r之间数字的xor值。(al ^ ... ^ ar)。
- 输入
- 输入t组数据,下一行输入n (1 <=n <=10^5)和m (1 <=m <= 10^4),第三行输入n个数字ai(0 <=ai <= 10^8),第四行输入m个询问l和r(1 <=l <=r <= n)。
- 输出
- 每个询问输出区间xor值的答案。
- 样例输入
1
3 2
0 1 2
1 2
3 3- 样例输出
1
2呃呃呃树状数组果然效果出众,从暴力800+ms变成了200+ms,学长深不可测,再感谢下阙神的指导,不然还不知道如何将树状数组扩展成异或形式求和。
主要问题就是这个树状数组如何构建:
首先建立一个一维(二维暂时没做到)的数组,作为树状数组的主体,然后运用add函数进行构建树状数组(每一个端点值附着在上面),然后用另一个getsum函数进行求和Sum[1~index]。当然一个区间和 Sum[L,R]=Sum[r]-Sum[l-1]。至此,一个树状数组普通求和就可以顺利进行了,那么异或求和例如an^an+1^......^am如何求和?通过阙神指导和之前的记忆,先把add和getsum中所有关于val(下标+号千万别动)的加号改为^号,然后最后答案的Sum[r]-Sum[l-1]中减号改为^号。
代码:
#include<iostream>
#include<algorithm>
#include<cstdlib>
#include<sstream>
#include<cstring>
#include<cstdio>
#include<string>
#include<deque>
#include<cmath>
#include<queue>
#include<set>
#include<map>
using namespace std;
const int n = 100009;
int tree[n];
void add(int k, int val)
{
while (k <= n)
{
tree[k] ^= val; //加号改^号
k += k & -k; //这里是下标的操作,不能动
}
}
int getsum(int k)
{
int sum = 0;
while (k)
{
sum ^= tree[k]; //加号改^号
k -= k & -k; /
}
return sum;
}
int main(void)
{
int i, j, s, m, l, r, t, g;
scanf("%d", &t);
while (t--)
{
memset(tree, 0, sizeof(tree));
scanf("%d%d", &g, &m);
for (i = 1; i <= g; i++)
{
scanf("%d", &s);
add(i, s); //枝点更新(附着)
}
for (i = 0; i < m; i++)
{
scanf("%d%d", &l, &r);
printf("%d\n", getsum(r)^getsum(l - 1)); //减号改^号
}
}
return 0;
}
NOJ——1669xor的难题(详细的树状数组扩展—异或求和)的更多相关文章
- 树状数组区间加法&区间求和操作
树状数组区间加法&区间求和操作 一般的树状数组解决区间加&单点询问并不复杂 但是要解决区间求和... 我们假设原数组是\(\{a_i\}\),差分数组\(\{d_i=a_i-a_{i- ...
- POJ 2155 Matrix(二维树状数组+区间更新单点求和)
题意:给你一个n*n的全0矩阵,每次有两个操作: C x1 y1 x2 y2:将(x1,y1)到(x2,y2)的矩阵全部值求反 Q x y:求出(x,y)位置的值 树状数组标准是求单点更新区间求和,但 ...
- 【树状数组区间修改区间求和】codevs 1082 线段树练习 3
http://codevs.cn/problem/1082/ [AC] #include<bits/stdc++.h> using namespace std; typedef long ...
- caioj1097: [视频]树状数组1(快速求和计算) cdq分治入门
这题虽然是个树状数组,但是也可以用cdq分治做啊~~,这个就是一个浅显的二维偏序的应用? cdq分治和普通的分治有什么区别? 举个栗子:有4个小朋友,你请他们吃饭,假如你分治搞,就会分成很多子问题—— ...
- POJ3928Ping pong[树状数组 仿逆序对]
Ping pong Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 3109 Accepted: 1148 Descrip ...
- HDU1541--Stars(树状数组)
Stars Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Subm ...
- 【BZOJ3132】【TYVJ1716】上帝造题的七分钟 二维树状数组
题目大意 维护一个\(n\times m\)的矩阵,有两种操作: \(1~x_1~y_1~x_2~y_2~v\):把\((a,b),(c,d)\)为顶点的矩形区域内的所有数字加上\(v\). \(2~ ...
- BZOJ 3132(上帝造题的七分钟-树状数组求和+2D逆求和数组)
3132: 上帝造题的七分钟 Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 46 Solved: 18[Submit][Status][Discus ...
- BZOJ3132 上帝造题的七分钟 【二维树状数组】
题目 "第一分钟,X说,要有矩阵,于是便有了一个里面写满了0的n×m矩阵. 第二分钟,L说,要能修改,于是便有了将左上角为(a,b),右下角为(c,d)的一个矩形区域内的全部数字加上一个值的 ...
随机推荐
- 如何处理VirtualBox启动错误消息:The vboxdrv kernel module is not loaded
我在启动minikube时,遇到如下错误消息: Starting local Kubernetes v1.10.0 cluster... Starting VM... E1010 03:27:37.9 ...
- 前端面试题总结(三)JavaScript篇
前端面试题总结(三)JavaScript篇 一.谈谈对this的理解? this是一个关键字. this总是指向函数的直接调用者(而非间接调用者). 如果有new关键字,this指向new出来的那个对 ...
- jquery绑定事件的系统参数传递方法
如果是传递的事件自带函数,,可使用以下语法(以鼠标移动事件为例): init: function () { $(document).on("mousemove",loginOper ...
- $|^|\z|\Z|/a|/l
#!/usr/bin/perl use strict; use warnings; foreach(<>) { if (/(\w*)/a){print "$1\n";} ...
- -安装与配置 FTP 服务器
我们经常会使用 FTP,把本地电脑上的文件上传到服务器上,或者把服务器上的文件下载到自己的电脑里面.FTP 有服务端和客户端,FTP 的服务端提供了这种传输文件的服务,FTP 的客户端提供了传输文件的 ...
- NOIP模拟赛 经营与开发 小奇挖矿
[题目描述] 4X概念体系,是指在PC战略游戏中一种相当普及和成熟的系统概念,得名自4个同样以“EX”为开头的英语单词. eXplore(探索) eXpand(拓张与发展) eXploit(经营与开发 ...
- DC课程目标
- laravel中使用PHPQuery实现网页采集
由于没有PHPQuery的composer包安装所以需要我们手动在我们的laravel项目中安装加载PHPQuery,这里需要设置laravel的autoload->class map. 1.首 ...
- Pytorch学习(一)—— 自动求导机制
现在对 CNN 有了一定的了解,同时在 GitHub 上找了几个 examples 来学习,对网络的搭建有了笼统地认识,但是发现有好多基础 pytorch 的知识需要补习,所以慢慢从官网 API进行学 ...
- OpenCV中图像的读取,显示与保存
图像的读取,显示与保存 相关函数:cv2.imread().cv2.imshow().cv2.imwrite() 1.读入图像: 用cv2.imread()函数来读取图像,cv2.imread(路 ...