主要列举的网络结构有:

1. Inception V1

1.1 Inception module

  • 利用Inception module叠加的形式构造网络;可以近似一个稀疏结构;
  • 不同size的卷积核能够增强网络的适应力;
  • 即增加了网络的深度,同时增加了网络对尺度的适应性;
  • 随着更多的Inception module的叠加,同样也会带来计算成本的增加;

  • Network-in-Network在卷积中的表示形式使:\(1\times 1\)的卷积;
  • \(1\times 1\)的卷积能够有效地的降维,在其后使用激活函数,能够提高网络的表达能力;
  • 有降维、减少参数量的作用;
  • 提高了内部计算资源的利用率;

整个网络结构:

  • 中间增加了两个loss,保证更好的收敛,有正则化的作用;
  • 在最后一个全链接层前,使用Global average pooling;

2. Inception V2

  • 使用Batch Normalization层,即对min-batch内部进行标准化处理,使其输出规范到标准正态分布;
  • 利用两个\(3\times 3\)的卷积层代替一个\(5\times 5\)的卷积层,降低了参数数量;

3. Inception V3

  • 卷积分解:将\(7\times 7\)的卷积分解成\(1\times 7, 7\times 1\)的两个卷积,\(3\times 3\)的卷积也类似分解;可以用于加速计算,同时可以加深网络,也增加了网络的非线性;
  • 在整个网络结构中,有三种卷积分解模型,见下图;
  • 输入从\(224 \times 224\)变成了\(299 \times 299\);

4. Inception V4, Inception-ResNet

  • 将Inception module与Residual Connection结合使用,加速训练,精度更高;

5. Xception(extreme inception)

深度卷积网络-Inception系列的更多相关文章

  1. 深度卷积网络(DCNN)和人类识别物体方法的不同

    加州大学洛杉矶分校在PLOS Computing Biology上发表了一篇文章,分析了深度卷积网络(DCNN)和人类识别物体方法的不同:深度卷积网络(DCNN)是依靠物体的纹理进行识别,而人类是依靠 ...

  2. ng-深度学习-课程笔记-12: 深度卷积网络的实例探究(Week2)

    1 实例探究( Cast Study ) 这一周,ng对几个关于计算机视觉的经典网络进行实例分析,LeNet-5,AlexNet,VGG,ResNet,Inception. 2 经典网络( Class ...

  3. deeplearning.ai 卷积神经网络 Week 2 深度卷积网络:实例研究 听课笔记

    1. Case study:学习经典网络的原因是它们可以被迁移到其他任务中. 1.1)几种经典的网络: a)LeNet-5(LeCun et al., 1998. Gradient-based lea ...

  4. Coursera Deep Learning笔记 深度卷积网络

    参考 1. Why look at case studies 介绍几个典型的CNN案例: LeNet-5 AlexNet VGG Residual Network(ResNet): 特点是可以构建很深 ...

  5. Theano3.5-练习之深度卷积网络

    来源:http://deeplearning.net/tutorial/lenet.html#lenet Convolutional Neural Networks (LeNet) note:这部分假 ...

  6. 【Python图像特征的音乐序列生成】深度卷积网络,以及网络核心

    这个项目主要涉及到两个网络,其中卷积神经网络用来提取图片表达的情绪,提取出一个二维向量. 网络结构如图: 词向量采用预训练的glove模型,d=50,其他信息包括了图片的“空旷程度”.亮度.对比度等信 ...

  7. 卷积神经网络学习笔记——轻量化网络MobileNet系列(V1,V2,V3)

    完整代码及其数据,请移步小编的GitHub地址 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/DeepLearningNote 这里结合网络的资料和Mo ...

  8. [DeeplearningAI笔记]卷积神经网络2.3-2.4深度残差网络

    4.2深度卷积网络 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献 [残差网络]--He K, Zhang X, Ren S, et al. Deep Residual Learni ...

  9. CNN卷积神经网络_深度残差网络 ResNet——解决神经网络过深反而引起误差增加的根本问题,Highway NetWork 则允许保留一定比例的原始输入 x。(这种思想在inception模型也有,例如卷积是concat并行,而不是串行)这样前面一层的信息,有一定比例可以不经过矩阵乘法和非线性变换,直接传输到下一层,仿佛一条信息高速公路,因此得名Highway Network

    from:https://blog.csdn.net/diamonjoy_zone/article/details/70904212 环境:Win8.1 TensorFlow1.0.1 软件:Anac ...

随机推荐

  1. Django框架ORM单表删除表记录_模型层

    此方法依赖的表是之前创建的过的一张表 参考链接:https://www.cnblogs.com/apollo1616/p/9840354.html 1.删除方法就是delete(),它运行时立即删除对 ...

  2. iOS 使用GitHub托管代码

    1.注册一个github账号在官网.https://github.com/github 2.下载mac版的github客户端.网址:https://desktop.github.com 3.之后会在出 ...

  3. jzyz集训 0611

    今天jjh和mzx搞的互测题目有必要记录一下. T1:序列上可以放012三种颜色,有m个限制表示[l,r]区间的颜色数目必须是c,求方案数. 显然的DP,但关键是状态怎么设置,连续设置了n个状态都被自 ...

  4. 深入浅出理解linux inode结构【转】

    本文转载自:https://blog.csdn.net/fantasyhujian/article/details/9151615 一.inode是什么? 参考文档:http://tech.diann ...

  5. Linux CentOS系统上安装Eclipse

    Linux CentOS系统上安装Eclipse 1. 下载Eclipse软件 下载网址:http://www.eclipse.org/downloads/packages/release/Juno/ ...

  6. Redis高可用部署及监控

    Redis高可用部署及监控 目录                        一.Redis Sentinel简介 二.硬件需求 三.拓扑结构 .单M-S结构 .双M-S结构 .优劣对比 四.配置部 ...

  7. linkedhashSet和hashSet和TreeSet的区别(转)

    Set接口Set不允许包含相同的元素,如果试图把两个相同元素加入同一个集合中,add方法返回false.Set判断两个对象相同不是使用==运算符,而是根据equals方法.也就是说,只要两个对象用eq ...

  8. poj-2336 Ferry Loading II(dp)

    题目链接: Ferry Loading II Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 3946   Accepted: ...

  9. codeforces 587B B. Duff in Beach(dp)

    题目链接: B. Duff in Beach time limit per test 2 seconds memory limit per test 256 megabytes input stand ...

  10. [算法]Trie树

    我是好文章的搬运工,原文来自博客园,博主一线码农,选自”6天通吃树结构“系列,地址:http://www.cnblogs.com/huangxincheng/archive/2012/11/25/27 ...