AGC001 F - Wide Swap【线段树+堆+拓扑排序】
给出的模型很难搞,所以转换一下,记p[i]为i这个数的位置,然后相邻两个p值差>k的能交换,发现使原问题字典序最小也需要使这里的字典序最小
注意到p值差<=k的前后顺序一定不変,那么可以n^2建图用堆跑最小字典序拓扑序
考虑优化,每个点需要向[p[i]-k+1,p[i]+k-1]这段区间的数连边,但是有一些边是多余的,也就是区间[p[i]-k+1,p[i]],[p[i],p[i]+k-1]这两个区间内的数一定两两有边所以连向当前点后面最近的一个即可,这个用线段树来找
#include<iostream>
#include<cstdio>
#include<queue>
using namespace std;
const int N=3000005;
int n,k,a[N],p[N],h[N],cnt,d[N],tot;
struct xds
{
int l,r,p;
}t[N];
struct qwe
{
int ne,to;
}e[N];
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
void build(int ro,int l,int r)
{
t[ro].l=l,t[ro].r=r,t[ro].p=n+1;
if(l==r)
return;
int mid=(l+r)>>1;
build(ro<<1,l,mid);
build(ro<<1|1,mid+1,r);
}
void update(int ro,int p,int v)
{
if(t[ro].l==t[ro].r)
{
t[ro].p=v;
return;
}
int mid=(t[ro].l+t[ro].r)>>1;
if(p<=mid)
update(ro<<1,p,v);
else
update(ro<<1|1,p,v);
t[ro].p=min(t[ro<<1].p,t[ro<<1|1].p);
}
int ques(int ro,int l,int r)
{
if(t[ro].l==l&&t[ro].r==r)
return t[ro].p;
int mid=(t[ro].l+t[ro].r)>>1;
if(r<=mid)
return ques(ro<<1,l,r);
else if(l>mid)
return ques(ro<<1|1,l,r);
else
return min(ques(ro<<1,l,mid),ques(ro<<1|1,mid+1,r));
}
void add(int u,int v)
{//cerr<<u<<" "<<v<<endl;
cnt++;
e[cnt].ne=h[u];
e[cnt].to=v;
d[v]++;
h[u]=cnt;
}
int main()
{
n=read(),k=read();
for(int i=1;i<=n;i++)
a[i]=read(),p[a[i]]=i;
build(1,1,n);
for(int i=n;i>=1;i--)
{
int x=ques(1,p[i],min(n,p[i]+k-1)),y=ques(1,max(1,p[i]-k+1),p[i]);
if(x<=n)
add(p[i],p[x]);
if(y<=n)
add(p[i],p[y]);
update(1,p[i],i);
}
priority_queue<int,vector<int>,greater<int> >q;
for(int i=1;i<=n;i++)
if(!d[i])
q.push(i);
while(!q.empty())
{
int u=q.top();
p[++tot]=u;
q.pop();
for(int i=h[u];i;i=e[i].ne)
if(!(--d[e[i].to]))
q.push(e[i].to);
}
for(int i=1;i<=n;i++)
a[p[i]]=i;
for(int i=1;i<=n;i++)
printf("%d\n",a[i]);
return 0;
}
AGC001 F - Wide Swap【线段树+堆+拓扑排序】的更多相关文章
- AtCoder AGC001F Wide Swap (线段树、拓扑排序)
题目链接: https://atcoder.jp/contests/agc001/tasks/agc001_f 题解: 先变成排列的逆,要求\(1\)的位置最小,其次\(2\)的位置最小,依次排下去( ...
- 【AtCoder Grand Contest 001F】Wide Swap [线段树][拓扑]
Wide Swap Time Limit: 50 Sec Memory Limit: 512 MB Description Input Output Sample Input 8 3 4 5 7 8 ...
- Atcoder Grand Contest 001 F - Wide Swap(拓扑排序)
Atcoder 题面传送门 & 洛谷题面传送门 咦?鸽子 tzc 来补题解了?奇迹奇迹( 首先考虑什么样的排列可以得到.我们考虑 \(p\) 的逆排列 \(q\),那么每次操作的过程从逆排列的 ...
- BZOJ4699 树上的最短路(最短路径+dfs序+线段树+堆+并查集)
首先一般化的将下水道和塌陷看成一个东西.注意到在从源点出发的所有需要使用某条下水道的最短路径中,该下水道只会被使用一次,该下水道第一个被访问的点相同,且只会在第一个访问的点使用该下水道.这个第一个访问 ...
- BZOJ4538 HNOI2016网络(树链剖分+线段树+堆/整体二分+树上差分)
某两个点间的请求只对不在这条路径上的询问有影响.那么容易想到每次修改除该路径上的所有点的答案.对每个点建个两个堆,其中一个用来删除,线段树维护即可.由于一条路径在树剖后的dfs序中是log个区间,所以 ...
- BZOJ4946[Noi2017]蔬菜——线段树+堆+模拟费用流
题目链接: [Noi2017]蔬菜 题目大意:有$n$种蔬菜,每种蔬菜有$c_{i}$个,每种蔬菜每天有$x_{i}$个单位会坏掉(准确来说每天每种蔬菜坏掉的量是$x_{i}-$当天这种蔬菜卖出量), ...
- BZOJ5462 APIO2018新家(线段树+堆)
一个显然的做法是二分答案后转化为查询区间颜色数,可持久化线段树记录每个位置上一个同色位置,离线后set+树状数组套线段树维护.这样是三个log的. 注意到我们要知道的其实只是是否所有颜色都在该区间出现 ...
- 【BZOJ4504】K个串 可持久化线段树+堆
[BZOJ4504]K个串 Description 兔子们在玩k个串的游戏.首先,它们拿出了一个长度为n的数字序列,选出其中的一个连续子串,然后统计其子串中所有数字之和(注意这里重复出现的数字只被统计 ...
- 【BZOJ4631】踩气球 链表+线段树+堆
[BZOJ4631]踩气球 Description 六一儿童节到了, SHUXK 被迫陪着M个熊孩子玩一个无聊的游戏:有N个盒子从左到右排成一排,第i个盒子里装着Ai个气球. SHUXK 要进行Q次操 ...
随机推荐
- [证书服务器 第二篇] 基于OpenSSL 在 CentOS6 系统上 搭建自签证书服务,并应用于Web容器
第一部分:概述 .. 第二部分:环境准备 1 操作系统 CentOS 6.x 2 安装openssl yum install -y openssl 3 安装jdk 从官网下载JDK http://ww ...
- 第一个Vert.x程序
Jar依赖 <dependency> <groupId>io.vertx</groupId> <artifactId>vertx-core</ar ...
- Raspberry Pi3 ~ 使用eclipse进行远程调试
为了开发方便需要在电脑上对树莓派进行远程Debug. l 在eclipse中安装交叉编译(参照开发环境搭建) arm-linux-gnueabihf-gcc l 树莓派中检查是否安装了gdb ...
- mysql too many connections 解决方法
1.mysql -u root -p 回车输入密码进入mysql 2.show processlist; 查看连接数,可以发现有很多连接处于sleep状态,这些其实是暂时没有用的,所以可以kill ...
- HDU 4652 Dice:期望dp(成环)【错位相减】
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4652 题意: 给你一个有m个面的骰子. 两种询问: (1)"0 m n": “最后 ...
- jsp参数传递
jsp参数传递 jsp中四种传递参数的方法 1.form表单 2.request.setAttribute();和request.getAttribute(); 3.超链接:<a herf=&q ...
- 联系E-R:学生选课系统
- struts2 validate手动验证
我们前面学习struts2知道,struts2通过拦截器实现了一些验证操作. 比如,如果是不能转换的类型在action中接受的话会跳转到错误页面,错误信息中会包含对应的错误信息,例如: 首先我们了解一 ...
- win7 jenkins搭建.Net项目自动构建
前提:操作系统win7, 确保需要的.NET Framework已经安装 1. 安装插件 Jenkins--系统管理局--管理插件--可选插件,搜索MSBuild Plugin并安装:重启tomcat ...
- Laravel的三种安装方法总结
Laravel号称巨匠级PHP框架,越来越多的PHPer选择它作为开发框架,作为一个Laravel初学者相信很多人向我一样被安装挡在了门外.所以今天结合文档和自己的学习经历总结一下Laravel的安装 ...