A - Drainage Ditches

Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u

 

Description

Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clover patch. This means that the clover is covered by water for awhile and takes quite a long time to regrow. Thus, Farmer John has built a set of drainage ditches so that Bessie's clover patch is never covered in water. Instead, the water is drained to a nearby stream. Being an ace engineer, Farmer John has also installed regulators at the beginning of each ditch, so he can control at what rate water flows into that ditch. 
Farmer John knows not only how many gallons of water each ditch can transport per minute but also the exact layout of the ditches, which feed out of the pond and into each other and stream in a potentially complex network. 
Given all this information, determine the maximum rate at which water can be transported out of the pond and into the stream. For any given ditch, water flows in only one direction, but there might be a way that water can flow in a circle. 
 

Input

The input includes several cases. For each case, the first line contains two space-separated integers, N (0 <= N <= 200) and M (2 <= M <= 200). N is the number of ditches that Farmer John has dug. M is the number of intersections points for those ditches. Intersection 1 is the pond. Intersection point M is the stream. Each of the following N lines contains three integers, Si, Ei, and Ci. Si and Ei (1 <= Si, Ei <= M) designate the intersections between which this ditch flows. Water will flow through this ditch from Si to Ei. Ci (0 <= Ci <= 10,000,000) is the maximum rate at which water will flow through the ditch. 
 

Output

For each case, output a single integer, the maximum rate at which water may emptied from the pond. 
 

Sample Input

5 4
1 2 40
1 4 20
2 4 20
2 3 30
3 4 10
 

Sample Output

50
 
 
题意: 给一个有向有环图,给出每条边到容量上限,无下限,源点是1,汇点是n,求最大流。赤裸裸点网络流,我用的ISAP算法。第一次过点网络流^_^
 
思路: ISAP模板过。白书上没给ISAP的BFS。。搞了好久才知道怎么改。。
 
代码
 
#include <vector>
#include <cstdio>
#include <cstring>
#include <queue>
#define FOR(i,n) for(i=1;i<=(n);i++)
using namespace std;
const int INF = 2e9+;
const int N = ; struct Edge{
int from,to,cap,flow;
}; struct ISAP{
int n,m,s,t;
int p[N],num[N];
vector<Edge> edges;
vector<int> G[N];
bool vis[N];
int d[N],cur[N];
void init(int _n,int _m)
{
n=_n; m=_m;
int i;
edges.clear();
FOR(i,n)
{
G[i].clear();
d[i]=INF;
}
}
void AddEdge(int from,int to,int cap)
{
edges.push_back((Edge){from,to,cap,});
edges.push_back((Edge){to,from,,});
m = edges.size();
G[from].push_back(m-);
G[to].push_back(m-);
}
bool BFS()
{
memset(vis,,sizeof(vis));
queue<int> Q;
Q.push(t);
d[t]=;
vis[t]=;
while(!Q.empty())
{
int x = Q.front(); Q.pop();
for(unsigned i=;i<G[x].size();i++)
{
Edge& e = edges[G[x][i]^];
if(!vis[e.from] && e.cap>e.flow)
{
vis[e.from]=;
d[e.from] = d[x]+;
Q.push(e.from);
}
}
}
return vis[s];
}
int Augment()
{
int x=t, a=INF;
while(x!=s)
{
Edge& e = edges[p[x]];
a = min(a,e.cap-e.flow);
x = edges[p[x]].from;
}
x = t;
while(x!=s)
{
edges[p[x]].flow+=a;
edges[p[x]^].flow-=a;
x=edges[p[x]].from;
}
return a;
}
int Maxflow(int _s,int _t)
{
s=_s; t=_t;
int flow = , i;
BFS();
// FOR(i,n) printf("%d ",d[i]); puts("");
if(d[s]>=n) return ;
memset(num,,sizeof(num));
memset(p,,sizeof(p));
FOR(i,n) if(d[i]<INF) num[d[i]]++;
int x=s;
memset(cur,,sizeof(cur));
while(d[s]<n)
{
if(x==t)
{
flow+=Augment();
x=s;
}
int ok=;
for(unsigned i=cur[x];i<G[x].size();i++)
{
Edge& e=edges[G[x][i]];
if(e.cap>e.flow && d[x]==d[e.to]+)
{
ok=;
p[e.to]=G[x][i];
cur[x]=i;
x=e.to;
break;
}
}
if(!ok)
{
int m=n-;
for(unsigned i=;i<G[x].size();i++)
{
Edge& e=edges[G[x][i]];
if(e.cap>e.flow) m=min(m,d[e.to]);
}
if(--num[d[x]]==) break;
num[d[x]=m+]++;
cur[x]=;
if(x!=s) x=edges[p[x]].from;
}
}
return flow;
}
}; ISAP isap; int main()
{
freopen("in","r",stdin);
int n,m,u,v,c;
while(scanf("%d%d",&m,&n)!=EOF)
{
isap.init(n,m);
while(m--)
{
scanf("%d%d%d",&u,&v,&c);
isap.AddEdge(u,v,c);
//isap.AddEdge(v,u,c);
}
printf("%d\n",isap.Maxflow(,n));
}
return ;
}

ISAP 模板

注意用宏定义的FOR来做点的初始化,有些题目点所从0开始编号有些所从1开始,所以需要用一个宏定义

struct Edge{
int from,to,cap,flow;
}; struct ISAP{
int n,m,s,t;
int p[N],num[N];
vector<Edge> edges;
vector<int> G[N];
bool vis[N];
int d[N],cur[N];
void init(int _n,int _m)
{
n=_n; m=_m;
int i;
edges.clear();
FOR(i,n)
{
G[i].clear();
d[i]=INF;
}
}
void AddEdge(int from,int to,int cap)
{
edges.push_back((Edge){from,to,cap,});
edges.push_back((Edge){to,from,,});
m = edges.size();
G[from].push_back(m-);
G[to].push_back(m-);
}
bool BFS()
{
memset(vis,,sizeof(vis));
queue<int> Q;
Q.push(t);
d[t]=;
vis[t]=;
while(!Q.empty())
{
int x = Q.front(); Q.pop();
for(unsigned i=;i<G[x].size();i++)
{
Edge& e = edges[G[x][i]^];
if(!vis[e.from] && e.cap>e.flow)
{
vis[e.from]=;
d[e.from] = d[x]+;
Q.push(e.from);
}
}
}
return vis[s];
}
int Augment()
{
int x=t, a=INF;
while(x!=s)
{
Edge& e = edges[p[x]];
a = min(a,e.cap-e.flow);
x = edges[p[x]].from;
}
x = t;
while(x!=s)
{
edges[p[x]].flow+=a;
edges[p[x]^].flow-=a;
x=edges[p[x]].from;
}
return a;
}
int Maxflow(int _s,int _t)
{
s=_s; t=_t;
int flow = , i;
BFS();
if(d[s]>=n) return ;
memset(num,,sizeof(num));
memset(p,,sizeof(p));
FOR(i,n) num[d[i]]++;
int x=s;
memset(cur,,sizeof(cur));
while(d[s]<n)
{
if(x==t)
{
flow+=Augment();
x=s;
}
int ok=;
for(unsigned i=cur[x];i<G[x].size();i++)
{
Edge& e=edges[G[x][i]];
if(e.cap>e.flow && d[x]==d[e.to]+)
{
ok=;
p[e.to]=G[x][i];
cur[x]=i;
x=e.to;
break;
}
}
if(!ok)
{
int m=n-;
for(unsigned i=;i<G[x].size();i++)
{
Edge& e=edges[G[x][i]];
if(e.cap>e.flow) m=min(m,d[e.to]);
}
if(--num[d[x]]==) break;
num[d[x]=m+]++;
cur[x]=;
if(x!=s) x=edges[p[x]].from;
}
}
return flow;
}
};
 
 
 
 

HDU 1532 Drainage Ditches (网络流)的更多相关文章

  1. hdu 1532 Drainage Ditches(网络流)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1532 题目大意是:农夫约翰要把多个小池塘的水通过池塘间连接的水渠排出去,从池塘1到池塘M最多可以排多少 ...

  2. HDU 1532 Drainage Ditches(网络流模板题)

    题目大意:就是由于下大雨的时候约翰的农场就会被雨水给淹没,无奈下约翰不得不修建水沟,而且是网络水沟,并且聪明的约翰还控制了水的流速, 本题就是让你求出最大流速,无疑要运用到求最大流了.题中m为水沟数, ...

  3. HDU 1532 Drainage Ditches (最大网络流)

    Drainage Ditches Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 65536/32768K (Java/Other) To ...

  4. HDU 1532 Drainage Ditches 分类: Brush Mode 2014-07-31 10:38 82人阅读 评论(0) 收藏

    Drainage Ditches Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  5. HDU 1532 Drainage Ditches(最大流 EK算法)

    题目网址:http://acm.hdu.edu.cn/showproblem.php?pid=1532 思路: 网络流最大流的入门题,直接套模板即可~ 注意坑点是:有重边!!读数据的时候要用“+=”替 ...

  6. POJ 1273 || HDU 1532 Drainage Ditches (最大流模型)

    Drainage DitchesHal Burch Time Limit 1000 ms Memory Limit 65536 kb description Every time it rains o ...

  7. poj 1273 && hdu 1532 Drainage Ditches (网络最大流)

    Drainage Ditches Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 53640   Accepted: 2044 ...

  8. hdu 1532 Drainage Ditches(最大流)

                                                                                            Drainage Dit ...

  9. hdu 1532 Drainage Ditches(最大流模板题)

    Drainage Ditches Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

随机推荐

  1. VS2013 自动添加头部注释 -C#开发

    在团队开发中,头部注释是必不可少的.但在开发每次新建一个类都要复制一个注释模块也很不爽,所以得想个办法让开发工具自动生成我们所需要的模板.....操作方法如下: 方法/步骤 1 找你的vs安装目录, ...

  2. servlet3.0 文件上传功能

    注意 jsp页面中file选择 的要有属性 name='file' package com.webserver.webservice; import java.io.File; import java ...

  3. Eclipse如何删除插件

    删除Eclipse安装的插件方法: help -> install new softWare -> what is already installed ->选中 要卸载的插件 -&g ...

  4. a positive definite matrix

    https://en.wikipedia.org/wiki/Definite_quadratic_form https://www.math.utah.edu/~zwick/Classes/Fall2 ...

  5. vue+vuex构建单页应用

    基本 构建工具: webpack 语言: ES6 分号:行首分号规则(行尾不加分好, [ , ( , / , + , - 开头时在行首加分号) 配套设施: webpack 全家桶, vue 全家桶 项 ...

  6. 列举Python常用数据类型并尽量多的写出其中的方法

    #1 把字符串的第一个字符大写 string.capitalize() #2 返回一个原字符串居中,并使用空格填充至长度 width 的新字符串 string.center(width) #3 返回 ...

  7. git学习------>"Agent admitted failure to sign using the key." 问题解决方法

    今天用git clone 命令clone服务器上的代码时候报了如下的错误: ouyangpeng@oyp-ubuntu:~/Android/git_canplay_code$ git clone gi ...

  8. Java性能分析方法

    Java调优经验 http://www.rowkey.me/blog/2016/11/02/java-profile/

  9. rand()与srand()

    1.不用srand()的话 两次运行程序产生的随机数序列相同 2.用srand() 两次运行程序产生的随机数则不同 示例程序: #include<iostream> #include< ...

  10. python 列表之队列

    列表实现队列操作(FIFO),可以使用标准库里的 collections.deque,deque是double-ended quene的缩写,双端队列的意思,它可以实现从队列头部快速增加和取出对象. ...