[日常摸鱼]bzoj1502[NOI2005]月下柠檬树-简单几何+Simpson法
关于自适应Simpson法的介绍可以去看我的另一篇blog
http://www.lydsy.com/JudgeOnline/problem.php?id=1502
题意:空间里圆心在同一直线上且底面与地面平行的若干个圆台和顶层的圆锥以$\alpha$的角度投影到地面,求投影的面积。
(其实我是看po姐博客来的x)
首先把圆锥的顶点也看成一个半径为0的圆锥,对于每个高度为$h$的圆投影下去的坐标是$h/tan(\alpha)$,半径不变,而对于圆台的侧面投影下去是上下底两个圆的切线。

关于两个圆的切线可以像图上这样求(参考po姐博客的x)
$\sin(\alpha)=\frac{r_{i-1}-r_i}{x_i-x_{i-1}}$
这个式子同样可以适用于其他情况,然后三角函数搞一下求出其他点的坐标,根据坐标的范围用Simpson法来求面积。
只是把求点的函数值改成扫一遍所有的点和圆,找最大值。
哦然后我的Simpson递归的时候本来是让eps乘上$\frac{1}{2}$的…但是这样会T掉,不乘又会wa…orz
然后改成$\frac{2}{3}$就可以了…跑900+ms真神奇
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=515;
struct point
{
double x,y;
};
struct line
{
point p1,p2;
double k,b;
line(){}
void modify(double x1,double y1,double x2,double y2)
{
p1.x=x1;p1.y=y1;
p2.x=x2;p2.y=y2;
k=(p1.y-p2.y)/(p1.x-p2.x);
b=p1.y-k*p1.x;
}
double f(double x)
{
return k*x+b;
}
}ls[N];
struct circle
{
double x,r;
}cs[N];
int n,tot;double alpha;
inline double f(double x)
{
double res=0;double eps=1e-6;
for(register int i=1;i<=n;i++)
{
double dis=fabs(x-cs[i].x);
if(dis-cs[i].r>-eps)continue;
double y=sqrt(cs[i].r*cs[i].r-dis*dis);
res=max(res,y);
}
for(register int i=1;i<=tot;i++)
{
if(!(ls[i].p1.x<=x&&x<=ls[i].p2.x))continue;
double y=ls[i].f(x);
res=max(res,y);
}
return res;
}
inline double calc(double l,double r)
{
double mid=l+(r-l)/2;
return (f(l)+4.0*f(mid)+f(r))*(r-l)/6.0;
}
inline double asr(double l,double r,double area,double eps)
{
double mid=l+(r-l)/2;
double L=calc(l,mid),R=calc(mid,r);
if(fabs(L+R-area)<=eps*10.0)return L+R+(L+R-area)/10.0;
return asr(l,mid,L,eps*2.0/3.0)+asr(mid,r,R,eps*2.0/3.0);
}
inline double solve(double l,double r,double eps)
{
return asr(l,r,calc(l,r),eps);
}
int main()
{
//freopen("input.in","r",stdin);
double eps=1e-6,l,r;l=r=0;
scanf("%d%lf",&n,&alpha);alpha=1/(tan(alpha));
for(register int i=1;i<=n+1;i++)
{
scanf("%lf",&cs[i].x);
cs[i].x*=alpha;
cs[i].x+=cs[i-1].x;
}
for(register int i=1;i<=n;i++)
{
scanf("%lf",&cs[i].r);
}
for(register int i=1;i<=n+1;i++)
{
l=min(l,cs[i].x-cs[i].r);
r=max(r,cs[i].x+cs[i].r);
}
for(register int i=2;i<=n+1;i++)
{
double L=cs[i].x-cs[i-1].x;
if(L-fabs(cs[i].r-cs[i-1].r)<eps)continue;
//double sin_alpha=fabs(cs[i].r-cs[i-1].r)/L;
double sin_alpha=(cs[i-1].r-cs[i].r)/L;
double cos_alpha=sqrt(1-sin_alpha*sin_alpha);
ls[++tot].modify(cs[i-1].x+cs[i-1].r*sin_alpha,cs[i-1].r*cos_alpha,
cs[i].x+cs[i].r*sin_alpha,cs[i].r*cos_alpha);
}
printf("%.2lf",solve(l,r,eps)*2.0);
return 0;
}
[日常摸鱼]bzoj1502[NOI2005]月下柠檬树-简单几何+Simpson法的更多相关文章
- 【BZOJ-1502】月下柠檬树 计算几何 + 自适应Simpson积分
1502: [NOI2005]月下柠檬树 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 1017 Solved: 562[Submit][Status] ...
- [NOI2005]月下柠檬树[计算几何(simpson)]
1502: [NOI2005]月下柠檬树 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 1169 Solved: 626[Submit][Status] ...
- BZOJ1502: [NOI2005]月下柠檬树
Simpson法相当好用啊!神奇的骗分算法! /************************************************************** Problem: 1502 ...
- 【BZOJ1502】[NOI2005]月下柠檬树 Simpson积分
[BZOJ1502][NOI2005]月下柠檬树 Description 李哲非常非常喜欢柠檬树,特别是在静静的夜晚,当天空中有一弯明月温柔地照亮地面上的景物时,他必会悠闲地坐在他亲手植下的那棵柠檬树 ...
- BZOJ 1502: [NOI2005]月下柠檬树 [辛普森积分 解析几何 圆]
1502: [NOI2005]月下柠檬树 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 1070 Solved: 596[Submit][Status] ...
- [NOI2005]月下柠檬树
题意 F.A.Qs Home Discuss ProblemSet Status Ranklist Contest 入门OJ ModifyUser autoint Logout 捐赠本站 Probl ...
- 5.21 省选模拟赛 luogu P4207 [NOI2005]月下柠檬树 解析几何 自适应辛普森积分法
LINK:月下柠檬树 之前感觉这道题很鬼畜 实际上 也就想到辛普森积分后就很好做了. 辛普森积分法的式子不再赘述 网上多的是.值得一提的是 这道题利用辛普森积分法的话就是一个解析几何的问题 而并非计算 ...
- 【bzoj1502】[NOI2005]月下柠檬树 自适应Simpson积分
题目描述 李哲非常非常喜欢柠檬树,特别是在静静的夜晚,当天空中有一弯明月温柔地照亮地面上的景物时,他必会悠闲地坐在他亲手植下的那棵柠檬树旁,独自思索着人生的哲理.李哲是一个喜爱思考的孩子,当他看到在月 ...
- BZOJ1502:[NOI2005]月下柠檬树——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=1502 https://www.luogu.org/problemnew/show/P4207 李哲 ...
随机推荐
- 企业级工作流解决方案(十一)--集成Abp和ng-alain--权限系统服务
权限系统主要定义为管理员增删改查权限数据,直接读取数据库,权限系统服务主要定义为供其他系统调用的权限验证接口,定义为两个不同的微服务. 权限系统有一个特点,数据变动比较小,数据量本身并不是很大,访问量 ...
- 交换机通过Loopback Detection检测(设备所在网络环路)
组网图形 Loopback Detection简介 见上篇文章(详情见),不再赘述. 组网需求 如图1所示,某小型企业采用二层组网,所属VLAN为100.由于人员流动性大,网络拓扑变动频繁,变动往往 ...
- ssh命令的常用使用场景
目录 一.最简单的登陆 二.登陆+执行命令 三.端口转发 四.参考 一.最简单的登陆 就是简单登陆一下主机,默认端口22 ssh {hostname}@{host_ip} ➜ Charles ssh ...
- Sysbench对Mysql进行基准测试
前言 1.基准测试(benchmarking)是性能测试的一种类型,强调的是对一类测试对象的某些性能指标进行定量的.可复现.可对比的测试. 进一步来理解,基准测试是在某个时候通过基准测试建立一个已知的 ...
- Linux(CentOS 7下httpd的安装)
Linux(CentOS 7下httpd的安装) 自己是个linux小白.最近几天在学linux,看到视频教程中安装源码包httpd所以自己想试一试,安装过程中有很多的错误,在网上找了很久也没找到,要 ...
- jmp使用
jps -l jmap 36429 jmap -heap 36429 jmap -histo:live 36429 jmap -clstats 36429 jmap -finalizerinfo 3 ...
- Foreground-aware Image Inpainting
引言 语义分割得到边缘信息指导修复其三 存在问题:现在的图像修复方法主要的通过周围像素来修复,当修复区域与前景区域(显著物体)有交叠时,由于修复区域缺失前景与背景的时间内容导致修复结果不理想. 提出方 ...
- EdgeConnect: Structure Guided Image Inpainting using Edge Prediction
论文 pytorch 引言 语义分割获取边缘信息指导修复其二 存在的问题:之前方法能够生成具有有意义结构的缺失区域,但生成的区域往往模糊或边缘部分存在伪影. 提出问题:提出了一个两阶段的模型,将inp ...
- CentOS下的IPMI尝试
1.载入支持 ipmi 功能的系统模块 modprobe ipmi_msghandler modprobe ipmi_devintf modprobe ipmi_poweroff modprobe i ...
- MiniUI日期选择框MonthPicker英文修改为中文
一.详细内容及解决方案 正常MIniUI的MonthPicker中的月份和星期默认是英文的,我百度搜索关于这个问题的博客少之又少,下面说下解决办法,非常简单. <input id="d ...