F. Kate and imperfection

假设一个一个的往集合里面放元素,显然在放某个元素之前,我们不想让它的倍数已经在集合里面。因为在这之前,我们不如先把这个数放进去,再把它的倍数放进去更优(因为它的倍数更容易和别的数字产生更大的gcd)。

所以在放元素时,这个元素的所有因数应该已经都在集合中了,对于一个集合,如果对于集合中的所有数字,他们的因数都在该集合中,那么这个集合中某两个数字的最大gcd即为某个数的最大真因子(非本身)。

设 \(d[x]\) 为 x 的最大真因数,按照\(d[x]\) 排序处理即可

如果第一段猜想解释还不够清楚,可以参考一下官方题解,首先知道答案序列一定是不降的,分段递增。然后如果对于\(a_i \in A=\{a_1,a_2,\cdots a_k\}\),如果 \(a_i\) 的某个因子不在集合中,可以用这个因子替换掉 \(a_i\) ,这个集合的不完美度只会降低不会升高,所以我们有理由让\(a_i\) 的所有因子都出现在该集合中。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int inf = 0x3f3f3f3f;
#define dbg(x...) do { cout << "\033[32;1m" << #x <<" -> "; err(x); } while (0)
void err() { cout << "\033[39;0m" << endl; }
template<class T, class... Ts> void err(const T& arg,const Ts&... args) { cout << arg << " "; err(args...); }
const int N = 500000 + 5;
int primes[N], v[N], m;
void prime(int n){
v[1] = 1;
for(int i=2;i<=n;i++){
if(!v[i]) primes[++m] = i, v[i] = 1;
for(int j=1;j<=m;j++){
if(primes[j] > n / i) break;
v[primes[j]*i] = i;
if(i % primes[j] == 0) break;
}
}
} int main(){
int n;scanf("%d", &n);
prime(n);
sort(v+1, v+1+n);
for(int i=2;i<=n;i++)
printf("%d ", v[i]);
return 0;
}

CF-1333F Kate and imperfection的更多相关文章

  1. CF R 632 div2 1333F Kate and imperfection

    赛后看了半天题 才把题目看懂 英语水平极差. 意思:定义一个集合S的权值为max{gcd(a,b)};且\(a\neq b\) 这个集合可以从1~n中选出一些数字 求出当集合大小为k时的最小价值. 无 ...

  2. Codeforces Round #632 (Div. 2)

    Codeforces Round #632 (Div. 2) 这一场打的好差呀,这几次艰难上的分全部掉回去了,感觉就像一夜回到了解放前. 说实话,就是被B卡到了,没看到只能从小的放到大的... Lit ...

  3. ORA-00494: enqueue [CF] held for too long (more than 900 seconds) by 'inst 1, osid 5166'

    凌晨收到同事电话,反馈应用程序访问Oracle数据库时报错,当时现场现象确认: 1. 应用程序访问不了数据库,使用SQL Developer测试发现访问不了数据库.报ORA-12570 TNS:pac ...

  4. cf之路,1,Codeforces Round #345 (Div. 2)

     cf之路,1,Codeforces Round #345 (Div. 2) ps:昨天第一次参加cf比赛,比赛之前为了熟悉下cf比赛题目的难度.所以做了round#345连试试水的深浅.....   ...

  5. cf Round 613

    A.Peter and Snow Blower(计算几何) 给定一个点和一个多边形,求出这个多边形绕这个点旋转一圈后形成的面积.保证这个点不在多边形内. 画个图能明白 这个图形是一个圆环,那么就是这个 ...

  6. ARC下OC对象和CF对象之间的桥接(bridge)

    在开发iOS应用程序时我们有时会用到Core Foundation对象简称CF,例如Core Graphics.Core Text,并且我们可能需要将CF对象和OC对象进行互相转化,我们知道,ARC环 ...

  7. [Recommendation System] 推荐系统之协同过滤(CF)算法详解和实现

    1 集体智慧和协同过滤 1.1 什么是集体智慧(社会计算)? 集体智慧 (Collective Intelligence) 并不是 Web2.0 时代特有的,只是在 Web2.0 时代,大家在 Web ...

  8. CF memsql Start[c]UP 2.0 A

    CF memsql Start[c]UP 2.0 A A. Golden System time limit per test 1 second memory limit per test 256 m ...

  9. CF memsql Start[c]UP 2.0 B

    CF memsql Start[c]UP 2.0 B B. Distributed Join time limit per test 1 second memory limit per test 25 ...

随机推荐

  1. 2021超详细的HashMap原理分析,面试官就喜欢问这个!

    一.散列表结构 散列表结构就是数组+链表的结构 二.什么是哈希? Hash也称散列.哈希,对应的英文单词Hash,基本原理就是把任意长度的输入,通过Hash算法变成固定长度的输出 这个映射的规则就是对 ...

  2. shelll中test命令的使用【转】

    Shell中的 test 命令用于检查某个条件是否成立,它可以进行数值.字符和文件三个方面的测试. 数值测试 参数 说明 -eq 等于则为真 -ne 不等于则为真 -gt 大于则为真 -ge 大于等于 ...

  3. 剑指offer 面试题9.1:用两个队列实现栈

    题目描述 使用队列实现栈的下列操作:push(x) -- 元素 x 入栈:pop() -- 移除栈顶元素:top() -- 获取栈顶元素:empty() -- 返回栈是否为空: 编程思想 利用双队列实 ...

  4. Windows同一软件不同窗口如何快速切换

    windows快速切换应用的快捷键是Alt + Tab 这个快捷键可以在多个应用之间快速切换,但是软件多开时,而此时我只想在同一软件内的多个窗口切换,一切换好多个窗口扑面而来,我还要去用找并用鼠标点击 ...

  5. Python pip install 默认路径修改。

    pip动不动就下载数百M的文件.这些文件默认在C:盘,那么为了节省空间需要修改这些路径: 打开cmd命令窗口.输入: python -m site C:\Users\hewei>python - ...

  6. 内存性能测试 Memtester+mbw

    Memtester简单介绍 Memtester主要是捕获内存错误和一直处于很高或者很低的坏位, 其测试的主要项目有随机值,异或比较,减法,乘法,除法,与或运算等等. 通过给定测试内存的大小和次数, 可 ...

  7. SQL -去重Group by 和Distinct的效率

    经实际测试,同等条件下,5千万条数据,Distinct比Group by效率高,但是,这是有条件的,这五千万条数据中不重复的仅仅有三十多万条,这意味着,五千万条中基本都是重复数据. 为了验证,重复数据 ...

  8. 求得二叉搜索树的第k小的元素

    求得二叉搜索树的第k小的元素 给定一个二叉搜索树,编写一个函数 kthSmallest 来查找其中第 k 个最小的元素. 须知:二叉搜索树,又叫二叉排序树,二叉查找树.特点是:左子树的所有元素都小于等 ...

  9. CSS奇思妙想 -- 使用 CSS 创造艺术

    本文属于 CSS 绘图技巧其中一篇.之前有过一篇:在 CSS 中使用三角函数绘制曲线图形及展示动画 想写一篇关于 CSS 创造艺术的文章已久,本文主要介绍如何借助 CSS-doodle ,利用 CSS ...

  10. Jmeter接口自动化测试系列之函数使用及扩展

    介绍一下Jmeter自带函数的使用和 函数扩展,来满足测试工作中的各种需求! Jmeter自带函数 点击函数帮助助手图标,弹出函数助手框,可以选择各种各样的函数 举例: _Random 获取随机数,可 ...