F. Kate and imperfection

假设一个一个的往集合里面放元素,显然在放某个元素之前,我们不想让它的倍数已经在集合里面。因为在这之前,我们不如先把这个数放进去,再把它的倍数放进去更优(因为它的倍数更容易和别的数字产生更大的gcd)。

所以在放元素时,这个元素的所有因数应该已经都在集合中了,对于一个集合,如果对于集合中的所有数字,他们的因数都在该集合中,那么这个集合中某两个数字的最大gcd即为某个数的最大真因子(非本身)。

设 \(d[x]\) 为 x 的最大真因数,按照\(d[x]\) 排序处理即可

如果第一段猜想解释还不够清楚,可以参考一下官方题解,首先知道答案序列一定是不降的,分段递增。然后如果对于\(a_i \in A=\{a_1,a_2,\cdots a_k\}\),如果 \(a_i\) 的某个因子不在集合中,可以用这个因子替换掉 \(a_i\) ,这个集合的不完美度只会降低不会升高,所以我们有理由让\(a_i\) 的所有因子都出现在该集合中。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int inf = 0x3f3f3f3f;
#define dbg(x...) do { cout << "\033[32;1m" << #x <<" -> "; err(x); } while (0)
void err() { cout << "\033[39;0m" << endl; }
template<class T, class... Ts> void err(const T& arg,const Ts&... args) { cout << arg << " "; err(args...); }
const int N = 500000 + 5;
int primes[N], v[N], m;
void prime(int n){
v[1] = 1;
for(int i=2;i<=n;i++){
if(!v[i]) primes[++m] = i, v[i] = 1;
for(int j=1;j<=m;j++){
if(primes[j] > n / i) break;
v[primes[j]*i] = i;
if(i % primes[j] == 0) break;
}
}
} int main(){
int n;scanf("%d", &n);
prime(n);
sort(v+1, v+1+n);
for(int i=2;i<=n;i++)
printf("%d ", v[i]);
return 0;
}

CF-1333F Kate and imperfection的更多相关文章

  1. CF R 632 div2 1333F Kate and imperfection

    赛后看了半天题 才把题目看懂 英语水平极差. 意思:定义一个集合S的权值为max{gcd(a,b)};且\(a\neq b\) 这个集合可以从1~n中选出一些数字 求出当集合大小为k时的最小价值. 无 ...

  2. Codeforces Round #632 (Div. 2)

    Codeforces Round #632 (Div. 2) 这一场打的好差呀,这几次艰难上的分全部掉回去了,感觉就像一夜回到了解放前. 说实话,就是被B卡到了,没看到只能从小的放到大的... Lit ...

  3. ORA-00494: enqueue [CF] held for too long (more than 900 seconds) by 'inst 1, osid 5166'

    凌晨收到同事电话,反馈应用程序访问Oracle数据库时报错,当时现场现象确认: 1. 应用程序访问不了数据库,使用SQL Developer测试发现访问不了数据库.报ORA-12570 TNS:pac ...

  4. cf之路,1,Codeforces Round #345 (Div. 2)

     cf之路,1,Codeforces Round #345 (Div. 2) ps:昨天第一次参加cf比赛,比赛之前为了熟悉下cf比赛题目的难度.所以做了round#345连试试水的深浅.....   ...

  5. cf Round 613

    A.Peter and Snow Blower(计算几何) 给定一个点和一个多边形,求出这个多边形绕这个点旋转一圈后形成的面积.保证这个点不在多边形内. 画个图能明白 这个图形是一个圆环,那么就是这个 ...

  6. ARC下OC对象和CF对象之间的桥接(bridge)

    在开发iOS应用程序时我们有时会用到Core Foundation对象简称CF,例如Core Graphics.Core Text,并且我们可能需要将CF对象和OC对象进行互相转化,我们知道,ARC环 ...

  7. [Recommendation System] 推荐系统之协同过滤(CF)算法详解和实现

    1 集体智慧和协同过滤 1.1 什么是集体智慧(社会计算)? 集体智慧 (Collective Intelligence) 并不是 Web2.0 时代特有的,只是在 Web2.0 时代,大家在 Web ...

  8. CF memsql Start[c]UP 2.0 A

    CF memsql Start[c]UP 2.0 A A. Golden System time limit per test 1 second memory limit per test 256 m ...

  9. CF memsql Start[c]UP 2.0 B

    CF memsql Start[c]UP 2.0 B B. Distributed Join time limit per test 1 second memory limit per test 25 ...

随机推荐

  1. 【SpringBoot1.x】SpringBoot1.x 开发热部署和监控管理

    SpringBoot1.x 开发热部署和监控管理 热部署 在开发中我们修改一个 Java 文件后想看到效果不得不重启应用,这导致大量时间花费,我们希望不重启应用的情况下,程序可以自动部署(热部署). ...

  2. LeetCode150 逆波兰表达式求值

    根据逆波兰表示法,求表达式的值. 有效的运算符包括 +, -, *, / .每个运算对象可以是整数,也可以是另一个逆波兰表达式. 说明: 整数除法只保留整数部分. 给定逆波兰表达式总是有效的.换句话说 ...

  3. 【Flutter】容器类组件之变换

    前言 Transform可以在其子组件绘制时对其应用一些矩阵变换来实现一些特效. 接口描述 const Transform({ Key key, @required this.transform, t ...

  4. 基于Python的接口自动化-读写excel文件

    引言 使用python进行接口测试时常常需要接口用例测试数据.断言接口功能.验证接口响应状态等,如果大量的接口测试用例脚本都将接口测试用例数据写在脚本文件中,这样写出来整个接口测试用例脚本代码将看起来 ...

  5. 【Linux】配置ssh留下的一些思考和大坑解决办法

    今天传包突然有问题,结果发现是ssh出现了问题,密钥也在里面,都是正常的,但是还有什么问题呢? 后来总结下需要注意点: 1.最开始你要检查.ssh/  这个文件夹的权限,看下权限是否为700或者为75 ...

  6. SDUST数据结构 - chap6 树与二叉树

    判断题: 选择题: 函数题: 6-1 求二叉树高度: 裁判测试程序样例: #include <stdio.h> #include <stdlib.h> typedef char ...

  7. centos7安装docker、docker-compose、es7.3.0、kibana7.3.0

    一.安装docker 1.更新yum包 sudo yum update 2.卸载旧版本(如果安装过旧版本的话) sudo yum remove docker docker-common docker- ...

  8. CODING 再携手腾讯云 Serverless,让开发者跑步上云

    近年来,腾讯云持续在云原生领域打磨和完善产品矩阵,致力于为开发者上云提供更好的产品和服务.继前段时间 CODING CI 助力腾讯云 Serverless 全新应用控制台.持续保障 Serverles ...

  9. vue-cli快速创建项目,交互式

    vue脚手架用于快速构建vue项目基本架构 下面开始安装vue-cli npm install -g @vue/cli # OR yarn global add @vue/cli以上两句命令都可以安装 ...

  10. Golang 性能优化实战

    小结: 1. 性能查看工具 pprof,trace 及压测工具 wrk 或其他压测工具的使用要比较了解. 代码逻辑层面的走读非常重要,要尽量避免无效逻辑. 对于 golang 自身库存在缺陷的,可以寻 ...