F. Kate and imperfection

假设一个一个的往集合里面放元素,显然在放某个元素之前,我们不想让它的倍数已经在集合里面。因为在这之前,我们不如先把这个数放进去,再把它的倍数放进去更优(因为它的倍数更容易和别的数字产生更大的gcd)。

所以在放元素时,这个元素的所有因数应该已经都在集合中了,对于一个集合,如果对于集合中的所有数字,他们的因数都在该集合中,那么这个集合中某两个数字的最大gcd即为某个数的最大真因子(非本身)。

设 \(d[x]\) 为 x 的最大真因数,按照\(d[x]\) 排序处理即可

如果第一段猜想解释还不够清楚,可以参考一下官方题解,首先知道答案序列一定是不降的,分段递增。然后如果对于\(a_i \in A=\{a_1,a_2,\cdots a_k\}\),如果 \(a_i\) 的某个因子不在集合中,可以用这个因子替换掉 \(a_i\) ,这个集合的不完美度只会降低不会升高,所以我们有理由让\(a_i\) 的所有因子都出现在该集合中。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int inf = 0x3f3f3f3f;
#define dbg(x...) do { cout << "\033[32;1m" << #x <<" -> "; err(x); } while (0)
void err() { cout << "\033[39;0m" << endl; }
template<class T, class... Ts> void err(const T& arg,const Ts&... args) { cout << arg << " "; err(args...); }
const int N = 500000 + 5;
int primes[N], v[N], m;
void prime(int n){
v[1] = 1;
for(int i=2;i<=n;i++){
if(!v[i]) primes[++m] = i, v[i] = 1;
for(int j=1;j<=m;j++){
if(primes[j] > n / i) break;
v[primes[j]*i] = i;
if(i % primes[j] == 0) break;
}
}
} int main(){
int n;scanf("%d", &n);
prime(n);
sort(v+1, v+1+n);
for(int i=2;i<=n;i++)
printf("%d ", v[i]);
return 0;
}

CF-1333F Kate and imperfection的更多相关文章

  1. CF R 632 div2 1333F Kate and imperfection

    赛后看了半天题 才把题目看懂 英语水平极差. 意思:定义一个集合S的权值为max{gcd(a,b)};且\(a\neq b\) 这个集合可以从1~n中选出一些数字 求出当集合大小为k时的最小价值. 无 ...

  2. Codeforces Round #632 (Div. 2)

    Codeforces Round #632 (Div. 2) 这一场打的好差呀,这几次艰难上的分全部掉回去了,感觉就像一夜回到了解放前. 说实话,就是被B卡到了,没看到只能从小的放到大的... Lit ...

  3. ORA-00494: enqueue [CF] held for too long (more than 900 seconds) by 'inst 1, osid 5166'

    凌晨收到同事电话,反馈应用程序访问Oracle数据库时报错,当时现场现象确认: 1. 应用程序访问不了数据库,使用SQL Developer测试发现访问不了数据库.报ORA-12570 TNS:pac ...

  4. cf之路,1,Codeforces Round #345 (Div. 2)

     cf之路,1,Codeforces Round #345 (Div. 2) ps:昨天第一次参加cf比赛,比赛之前为了熟悉下cf比赛题目的难度.所以做了round#345连试试水的深浅.....   ...

  5. cf Round 613

    A.Peter and Snow Blower(计算几何) 给定一个点和一个多边形,求出这个多边形绕这个点旋转一圈后形成的面积.保证这个点不在多边形内. 画个图能明白 这个图形是一个圆环,那么就是这个 ...

  6. ARC下OC对象和CF对象之间的桥接(bridge)

    在开发iOS应用程序时我们有时会用到Core Foundation对象简称CF,例如Core Graphics.Core Text,并且我们可能需要将CF对象和OC对象进行互相转化,我们知道,ARC环 ...

  7. [Recommendation System] 推荐系统之协同过滤(CF)算法详解和实现

    1 集体智慧和协同过滤 1.1 什么是集体智慧(社会计算)? 集体智慧 (Collective Intelligence) 并不是 Web2.0 时代特有的,只是在 Web2.0 时代,大家在 Web ...

  8. CF memsql Start[c]UP 2.0 A

    CF memsql Start[c]UP 2.0 A A. Golden System time limit per test 1 second memory limit per test 256 m ...

  9. CF memsql Start[c]UP 2.0 B

    CF memsql Start[c]UP 2.0 B B. Distributed Join time limit per test 1 second memory limit per test 25 ...

随机推荐

  1. openstack octavia的实现与分析(二)原理,架构与基本流程

    [了解] 其实说白了,Octavia就是将用户的API请求经过逻辑处理,转换成Haproxy或者Nginx的配置参数,下发到amphora虚机中. Octavia的内部实现中,逻辑流程的处理主要使用T ...

  2. Scrapy使用RabbitMQ做任务队列

    前言 一个月没更博客了,这个月也搞了不少东西,但是公司对保密性要求挺高,很多东西都没有办法写出来 想来想去,还是写一篇最近写Scrapy中遇到的跳转问题 如果你的业务需求是遇到301/302/303跳 ...

  3. js 中const 定义的值是否能更改

    const定义的基本类型不能改变,但是定义的对象是可以通过修改对象属性等方法来改变的. 1. const aa=trueaa=falseconsole.log(aa)VM1089:2 Uncaught ...

  4. 十四:SQL注入之类型及提交注入

    简要明确参数类型 数字,字符,搜索,json等 简要明确请求方法 GET,POST,COOKIE,REQUEST,HTTP头 其中SQL语句干扰符号:' " % ) } 等,具体查看用法 非 ...

  5. [SSL]在线检查服务器HTTPS安全

    https://myssl.com/ SSL/TLS安全评估报告 https://www.ssllabs.com/ssltest/ SSL Server Test HTTPS开启工具(IIS) htt ...

  6. Spring框架之事务源码完全解析

    Spring框架之事务源码完全解析   事务的定义及特性: 事务是并发控制的单元,是用户定义的一个操作序列.这些操作要么都做,要么都不做,是一个不可分割的工作单位.通过事务将逻辑相关的一组操作绑定在一 ...

  7. 记忆中的像素块褪色了吗?用开源的体素编辑器重新做个 3D 的吧!

    本文适合对图形表现有兴趣的美术或者开发人员 本文作者:HelloGitHub-Joey 早期的的显示设备像素颗粒较大,使得显示内容的颗粒感严重,像是由一堆方块组成的.比较好的例子就是 GBA 上的游戏 ...

  8. 如何用Python中自带的Pandas和NumPy库进行数据清洗

    一.概况 1.数据清洗到底是在清洗些什么? 通常来说,你所获取到的原始数据不能直接用来分析,因为它们会有各种各样的问题,如包含无效信息,列名不规范.格式不一致,存在重复值,缺失值,异常值等..... ...

  9. centos7下 开启/关闭/查看firewall运行状态命令

    1.开启防火墙:systemctl start firewalld.service [root@localhost bin]# systemctl start firewalld.service [r ...

  10. Java 栈的使用

    讲栈之前,要先讲一下Deque双端队列 既可以添加到队尾,也可以添加到队首 既可以从队首获取又可以从队尾获取 public interface Deque<E> extends Queue ...